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Introduction: In this article, the COMT gene val158met polymorphism and attention-deficit 

hyperactivity disorder (ADHD)-related differences in diffusion-tensor-imaging-measured white 

matter (WM) structure in children with ADHD and controls were investigated.

Patients and methods: A total of 71 children diagnosed with ADHD and 24 controls aged 

8–15 years were recruited. Using diffusion tensor imaging, COMT polymorphism and ADHD-

related WM alterations were investigated, and any interaction effect between the COMT 

polymorphism and ADHD was also examined. The effects of age, sex, and estimated total IQ 

were controlled by multivariate analysis of covariance (MANCOVA).

Results: First, an interaction between the COMT val158met polymorphism and ADHD in the 

right (R) cingulum (cingulate gyrus) (CGC) was found. According to this, valine (val) homozy-

gote ADHD-diagnosed children had significantly lower fractional anisotropy (FA) and higher 

radial diffusivity (RD) in the R-CGC than ADHD-diagnosed methionine (met) carriers, and 

val homozygote controls had higher FA and lower RD in the R-CGC than val homozygote 

ADHD patients. Second, met carriers had higher FA and axial diffusivity in the left (L)-uncinate 

fasciculus and lower RD in the L-posterior corona radiata and L-posterior thalamic radiation 

(include optic radiation) than the val homozygotes, independent of ADHD diagnosis. Third, 

children with ADHD had lower FA in the L-CGC and R-retrolenticular part of the internal 

capsule than the controls, independent of the COMT polymorphism.

Conclusion: Significant differences reported here may be evidence that the COMT gene val158-

met polymorphism variants, as well as ADHD, could affect brain development. ADHD and the 

COMT polymorphism might be interactively affecting WM development in the R-CGC to alter 

the WM connectivity in children with val homozygote ADHD.

Keywords: neuroimaging, attention deficit, hyperactivity, catechol-O-methyltransferase

Introduction
Attention-deficit hyperactivity disorder (ADHD), which is characterized by symptoms 

of inattention, hyperactivity, and impulsivity, is a neurodevelopmental disorder. It has 

a worldwide pooled prevalence of 5.2%.1 ADHD has been reported to be associated 

with alterations in the dopaminergic system2,3 and in the structural architecture of the 
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brain, such as white matter (WM) connectivity.4 Diffusion 

tensor imaging (DTI) is a neuroimaging method that gives 

information about WM integrity. It quantifies the pattern of 

water motion with fractional anisotropy (FA), radial diffusiv-

ity (RD), axial diffusivity (AD), and mean diffusivity (MD) 

parameters.5 DTI has been recently used widely to investigate 

WM alterations related to ADHD. Altered WM structure 

was reported in the first DTI study carried out in prepubertal 

children diagnosed with ADHD who were largely medica-

tion free.6 Later, various studies demonstrated findings to 

support WM disturbances in patients with ADHD.7,8 In these 

patients, both reduced and elevated FA values in comparison 

to controls have been reported. It has been suggested that 

reduced FA values seen in ADHD might be associated with 

axonal damage or delayed myelination, and elevated FA 

values might be related to decreased neuronal branching.4 

Recently, Witt and Stevens demonstrated a significant linear 

relationship between FA and RD measures of WM tracts and 

ADHD symptom severity.9

Although there is substantial support for alterations in 

WM integrity in patients with ADHD, we know little about 

whether and how dopaminergic system interferes with WM 

in ADHD. Because the dopaminergic system has a well-

known effect on the etiology and pharmacologic treatment 

of ADHD, the impact of genes related to dopaminergic 

system has been investigated.2,3 The catechol-O-methyl-

transferase (COMT) gene, which codes for an enzyme 

active in dopamine degradation, is one of the most exten-

sively studied genes related to the dopaminergic system 

and ADHD. A single-nucleotide polymorphism (SNP) of 

guanine (G allele) to adenine (A allele) transition at codon 

158 of COMT gene results in valine (val) to methionine 

(met) substitution (val158met SNP, rs4680). Carrying the 

met/met genotype leads to three- to fourfold reduction in 

COMT activity, resulting in a higher dopaminergic state.10 

COMT genotypes have been reported to be related to 

alterations in the brain structure through polymorphism-

associated variations in dopamine amounts, in both the gray 

matter11–14 and WM.15–18

Collectively, the literature has provided separate findings 

that demonstrated ADHD-associated WM disturbances and 

the dopaminergic-system-related alterations in the brain 

structure. However, “How dopaminergic system affects WM 

integrity in relation to ADHD?” is still a question of interest. 

A very recent study searched the answer to this question and 

concurrently investigated the impact of ADHD and COMT 

polymorphism in WM. The authors found that val homozy-

gous children diagnosed with ADHD (the ones with the lower 

dopaminergic state) had altered WM connectivity compared 

to those who were met carriers.19

Based on the literature, dopaminergic involvement in the 

pathophysiology of ADHD makes the COMT gene polymor-

phism a suspect and a probable underlying cause of WM 

alterations seen in ADHD. As briefly mentioned above, there 

are DTI studies conducted to investigate WM abnormalities 

related to ADHD or COMT polymorphism. However, we 

have little information about the impact of COMT poly-

morphisms on the WM integrity in patients with ADHD. In 

the current study, we examined the COMT gene val158met 

polymorphism-associated differences in DTI-measured 

WM structure in children diagnosed with ADHD and the 

healthy controls. We formed several hypotheses: 1) Children 

with COMT val homozygote genotype polymorphism (the 

ones with the lower dopaminergic state) would exhibit 

impaired WM integrity in comparison to the met carriers. 

2) Specific axonal circuits would show variations in DTI 

measurements according to the COMT genotypes. Because 

of the role of the dopamine in the cognitive processes, we 

expected to find alterations in the WM tracts that are known 

to function in cognitive processing (ie, uncinate fasciculus 

[UNC], corticothalamic–thalamocortical connections such 

as posterior thalamic radiation [PTR], and corona radiata). 

3) We expected that children with ADHD would have dif-

ferent diffusion properties in comparison to healthy controls, 

representing abnormalities in the WM structure. Because 

of the high heterogeneity of previous findings, no specific 

hypothesis was formed regarding the location of expected 

effects.4 4) DTI-measured WM microstructure abnormalities 

and parent- and teacher-rated ADHD symptoms (inatten-

tion, hyperactivity/impulsivity) would show a relationship. 

5) ADHD and COMT polymorphism would present an inter-

action in a particular WM region to alter the connectivity. 

We hypothesized that this interaction would occur in a WM 

region that is involved in attention processing and executive 

functioning. In this context, we expected to find such an 

interaction in the cingulum (cingulate gyrus) (CGC) since this 

region has been shown to be related to attention processing 

and executive functioning.20–22

Patients and methods
In this study, 71 children diagnosed with ADHD and 24 con-

trol subjects were recruited; genetic materials were assessed 

to determine the COMT val158met genotypes, and DTI data 

were acquired. The participants were evaluated at Child and 

Adolescent Psychiatry Outpatient Clinic of Ege University, 

between December 2011 and March 2013. Their neuroimaging 
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evaluation was completed in the radiology department of the 

same institution. Ege and Pamukkale University Ethics Com-

mittees approved the study, and the study was performed in 

accordance with the ethical standards presented in the 1964 

Declaration of Helsinki and its later amendments. Written 

informed consent was acquired from the parents.

Participants
The ADHD and control groups of subjects were children 

aged 8–15 years and IQ scores 80. All were living with 

their families and attending normal schools. None had any 

history of head injury with unconsciousness and any neuro-

logical or other serious medical diseases. The children who 

were using any constant prescribed medication for medical 

conditions, who had prior stimulant use history, or the ones 

who had used psychotropic drugs within the last 6 months 

were excluded from the study. Among the control and ADHD 

groups of subjects, participants with any psychiatric disorder 

were excluded. Only oppositional defiant disorder (ODD) 

comorbidity was allowed in the ADHD group.

Diagnostic procedures
A “best-estimate procedure”23 was used in the diagnostic 

evaluation stage. First, the families and teachers completed 

the Diagnostic and Statistical Manual of Mental Disorders, 

Fourth edition (DSM-IV) Disruptive Behavior Disorders Rat-

ing Scale – teacher and parent forms.24 With the aim to guar-

antee the inattentive symptoms to be adequately represented 

in all subjects with ADHD, the ones with 1 SD greater inatten-

tive scores than the age norms for these scales were invited to 

the diagnostic part of the study. In the diagnostic assessments, 

a semistructured interview (the Kiddie-Schedule for Affective 

Disorders and Schizophrenia, Present and Lifetime version) 

was conducted to the parents and children.25 Second diag-

nostic interviews were conducted to confirm the presence 

of ADHD symptoms by two experienced child psychiatrists 

who were blind to the first diagnostic evaluations.

Twenty-four healthy subjects were recruited from the 

same community to participate in the control group. The 

same diagnostic procedures were applied for the assessment 

of controls. The selected control subjects were those with 

inattentive scores of 1 SD below the mean for the child’s age 

on the DSM-IV Disruptive Behavior Disorders Rating Scale. 

In total, 71 children with ADHD and 24 control subjects were 

recruited for the study.

Additionally, mental status examinations of each child 

were performed with the Wechsler Intelligence Scale for 

Children-Revised vocabulary (verbal IQ) and block design 

(performance IQ) subtests, and estimated IQs were obtained 

based on these subtests.26

DNa extraction and genotype 
determination
The results of the genotypic analyses of the COMT val158met 

(c.1947 GA, rs4680) polymorphism are presented in the 

following sections.

Salting-out procedure was used to extract DNA from 

saliva.27 The genotypes were determined by a TaqMan™ 

fluorogenic 5′-nuclease assay using TaqMan probes; primer 

Express 3.0 (Thermo Fisher Scientific, Waltham, MA, USA) 

was used to design both the polymerase chain reaction 

primers and the TaqMan probes. For the COMT gene, the 

1947 GA (Val158Met) rs4680 custom-made primers and 

probes were used, and the SNP amplification assays were 

performed according to the manufacturer’s instructions. 

The amplifications and analyzes were performed with an 

ABI Prism 7500 Real-Time PCR System (Thermo Fisher 

Scientific) using the SDS 2.0.6 software for allelic discrimi-

nation (Thermo Fisher Scientific).

imaging acquisition
In the neuroimaging phase, 3.0 T magnetic resonance (MR) 

imaging scanner (Siemens Allegra, I
.
zmir, Turkey) with 

a 12-channel head coil, at the Ege University Center of 

Neuroradiology, was used. All the participants were scanned 

based on MR scan protocol beginning with T1-weighted 

anatomical imaging using the magnetization-prepared rapid 

gradient-echo sequence (repetition time (TR) =1,900 ms; 

echo time (TE) =2.71 ms; inversion time (TI) =900 ms; 

176 sagittal slices, 1 mm ×1 mm ×1 mm isotropic voxels). 

Diffusion-weighted echoplanar images were acquired along 

30 diffusion gradient directions for the acquisition of 45 

slices throughout the whole brain (TR =6,300 ms, TE =95 ms, 

field of view =256 mm2, b-value =1,000 s/m, isotropic voxel 

dimensions =2 mm3, slice thickness =2 mm). MR-compatible 

video goggles were used to show movies to the children 

with ADHD during the scan to enhance compliance with 

the procedure.

image processing
The Oxford Center for Functional Magnetic Resonance 

Imaging of the Brain Statistical Library (FMRIB Software 

Library [FSL 4.1.4], http://www.fmrib.ox.ac.uk/fsl) was used 

in the image analyses and tensor calculations.28 The imaging 

data were processed in the following manner. The diffusion 

images were corrected for the distortion, induced by gradient 
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coils and simple head motion, using the eddy current correc-

tion routine within FSL. First, the FA images were created 

by fitting a tensor model to the raw diffusion data, and then 

FSL’s Brain Extraction Tool was used to remove non-brain 

tissue from the image.29 The diffusion tensor was then 

calculated using FSL DTIFIT for whole brain volumes, and 

the resulting FA maps together with the AD (λ
1
) and RD ([λ

2
 

+ λ
3
]/2) maps were used in subsequent tract-based spatial 

statistics (TBSS) analysis.

Voxelwise statistical analyses of the FA data were per-

formed using TBSS.30 Each individual FA map was projected 

onto the common FA skeleton to obtain the individual FA 

skeleton, on which a voxelwise analysis was performed to 

examine the population differences. All the subjects’ FA 

data were then aligned into a common space (ie, normal-

ized into the 1 mm ×1 mm ×1 mm Montreal Neurological 

Institute MNI152 standardized space) using the FMRIB’s 

Non-Linear Image Registration Tool,31,32 which uses a 

b-spline representation of the registration warp field.33 This 

combined transformation was applied to all the parametric 

maps (FA, AD, MD, and RD). Next, the mean FA image 

was created and thinned to create a mean FA skeleton that 

represents the centers of all tracts common to the group. 

Each subject’s aligned FA data were then projected onto 

this skeleton, and the resulting data were fed into voxelwise 

cross-subject statistics. The FA threshold was then set at 

0.2 (TBSS default), in order to confine the analysis to WM. 

Voxelwise permutation-based nonparametric inference34 was 

performed on skeletonized FA data, using FSL Randomize 

Version 2.1. We performed a multiple comparison correction 

using threshold-free cluster enhancement,35 which allowed 

us to avoid making an arbitrary choice of the cluster-forming 

threshold, while preserving the sensitivity benefits of clus-

terwise correction. To compare trace, AD, and RD, we used 

FSL using the FA images to achieve nonlinear registration 

and skeletonization stages and also to estimate the projec-

tion vectors from each individual subject onto the mean FA 

skeleton. The nonlinear warps and skeleton projection can 

then also be applied to other images.

All extracted skeletons were overlaid with the John 

Hopkins University DTI-based probabilistic tractography 

atlas. Averaged DTI indices were then calculated for each 

atlas region.

regions of interest
The following 21 WM bundles were investigated: the com-

missural fibers, including the body of the corpus callosum, 

the genu of the corpus callosum, the splenium of the corpus 

callosum, and tapetum; the association fibers, including 

the cingulum (cingulate gyrus) (CGC) R/L, cingulum 

(hippocampus) (CGH) R/L, external capsule R/L, fornix 

(column and body) (FX) R/L, fornix (cres) stria terminalis 

(FX/ST) R/L, superior fronto-occipital fasciculus R/L, supe-

rior longitudinal fasciculus (SLF) R/L, sagittal stratum R/L, 

and the UNC R/L; and the projection fibers, including the 

anterior corona radiata R/L, anterior limb of internal capsule 

R/L, posterior corona radiata (PCR) R/L, posterior limb 

of internal capsule R/L, retrolenticular part of the internal 

capsule (RLIC) R/L, and the superior corona radiata R/L. 

Additionally, a tract in the brain stem, including superior 

cerebellar peduncle R/L and the PTR, including the optic 

radiation, was also included.

statistical analysis
For the statistical analysis, the Statistical Package for Social 

Sciences Version 17.0 (SPSS Inc., Chicago, IL, USA) was 

used. P-values 0.05 were considered statistically signifi-

cant. The group differences in the demographic variables 

were examined with independent sample’s t-test, one-way 

analyses of variance (one-way ANOVA), and chi-square 

tests. The three COMT genotypes (val/val, val/met, met/met) 

were grouped into two groups as val homozygotes (val/val) 

and met carriers (val/met + met/met) in the analyses.

For the diffusion alterations in the atlas-based tract 

regions of interest, we performed multivariate analysis 

of covariance (MANCOVA) to compare the DTI index 

differences between the COMT val158met genotype (val 

homozygotes vs met carriers), diagnosis (ADHD vs healthy 

controls), and interaction between the two (COMT vs diag-

nosis). We controlled the effects of age, sex, and estimated 

total IQ. The Bonferroni correction (P=0.05/2=0.025) was 

used to adjust for possible spurious findings due to multiple 

testing. Outliers were excluded from the analysis to obtain 

acceptable fit.

Results
A total of 71 patients with ADHD and 24 healthy con-

trols between the age group of 8 years and 15 years were 

enrolled in the study. The mean age of the ADHD group 

was 10.88±1.36 years, and the mean age of the control group 

was 10.80±2.02 years. There was no statistically significant 

difference between the study and control groups regarding 

age (P0.05). The ADHD group comprised 83% males and 

∼17% females. The healthy control group consisted of 75% 

males and 25% females. The difference between the groups 

regarding sex was not statistically significant (P0.05). 
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Again, there was no statistically significant difference 

between the ADHD and healthy control groups regarding 

mean estimated IQ (P0.05; Table 1). Among the ADHD 

subjects, eleven (15%) were meeting diagnostic criteria for 

comorbid ODD.

The age, sex, and mean estimated IQ of the study partici-

pants were compared according to the COMT gene val158met 

polymorphism groups. No significant difference was found 

regarding age, sex, or mean estimated IQ between the geno-

types (P0.05; Table 1). In the genotype distribution, in our 

samples, no deviation from the Hardy–Weinberg equilibrium 

was found (P0.05).

COMT and aDhD effects
MANCOVA was conducted to examine the effects of COMT 

genotype on the FA, MD, AD, and RD values of the WM 

tracts by assigning ADHD diagnosis, age, sex, and estimated 

IQ as covariates. The mean values of the WM tracts that 

had statistically significantly different DTI measurements 

between the COMT genotypes (val homozygotes and met 

carriers) and the ones that had a trend to approximate the 

significance level (P=0.025) are presented in Table 2.

Similarly, MANCOVA was carried out to examine the 

effects of ADHD diagnosis on the FA, MD, AD, and RD 

values of the WM tracts by assigning COMT genotypes, 

Table 1 sociodemographic characteristics and estimated Wisc-r scores of the diagnostic groups and COMT genotypes

Sociodemographic characteristics and WISC-R scores of ADHD and healthy control groups

ADHD 
(n=71)

Healthy controls 
(n=24)

Total 
(n=95)

t/χ2 values P-values

age, mean ± sD 10.88±1.36 10.80±2.02 10.82±1.87 t=0.196 *P=0.845
sex, male, n (%) 59 (83.1%) 18 (75%) 77 (81.1%) χ2=0.766 **P=0.381
estimated iQ, mean ± sD 109.42±18.60 111.45±17.84 109.93±18.34 t=0.468 *P=0.641

Sociodemographic characteristics and WISC-R scores of COMT genotype groups

GG  
(n=36)

GA  
(n=41)

AA  
(n=18)

F/χ2 values P-values

age, mean ± sD 10.64±1.55 11.22±2.11 10.28±1.77 F=1.889 ***P=0.157
sex, male, n (%) 32 (88.8%) 31 (75.6%) 14 (77.7%) χ2=2.356 **P=0.308
estimated iQ, mean ± sD 112.61±18.39 107.80±17.92 109.44±19.54 F=0.661 ***P=0.519

Notes: *independent sample’s t-test; **chi-square test; ***one-way aNOVa. aa, met/met; ga, val/met; gg, val/val.
Abbreviations: ADHD, attention-deficit hyperactivity disorder; ANOVA, analysis of variance; WISC-R, Wechsler Intelligence Scale for Children-Revised.

Table 2 The effect of the COMT genotypes on the white matter tracts

COMT genotypes (total n=95)

L/R Val/val (GG), 
mean ± SD (n=36)

Met carrier (GA + AA), 
mean ± SD (n=59)

F P-value* σ2

Fa
ec r 0.353±0.015 0.362±0.017 3.420 0.068 0.043
UNc l 0.374±0.024 0.393±0.036 5.816 0.018 0.063

MD
PTr (include Or) r 0.861±0.032 0.848±0.033 4.027 0.048 0.044
PTr (include Or) l 0.859±0.031 0.844±0.035 4.738 0.032 0.052
slF r 0.773±0.023 0.761±0.024 3.604 0.061 0.040

aD
UNc l 1.221±0.033 1.242±0.045 5.603 0.020 0.061

rD
Pcr l 0.641±0.033 0.618±0.032 7.001 0.010 0.074
PTr (include Or) r 0.603±0.033 0.587±0.036 4.799 0.031 0.052
PTr (include Or) l 0.612±0.026 0.592±0.032 6.521 0.012 0.073

slF r 0.605±0.024 0.592±0.023 3.490 0.065 0.039

Notes: *MaNcOVa, Bonferroni adjustment was used, bold values indicate P0.025 was accepted as significant. The effect of the diagnosis, age, sex, and estimated IQ was 
controlled. aa, met/met; ga, val/met; gg, val/val.
Abbreviations: aD, axial diffusivity; ec, external capsule; Fa, fractional anisotropy; l, left; MaNcOVa, multivariate analysis of covariance; MD, mean diffusivity; Or, optic 
radiation; Pcr, posterior corona radiata; PTr, posterior thalamic radiation; r, right; rD, radial diffusivity; slF, superior longitudinal fasciculus; UNc, uncinate fasciculus.
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age, sex and estimated IQ as covariates. The mean values 

for the WM tracts that had statistically significantly different 

DTI measurements between the diagnostic groups (patients 

with ADHD and controls) and the ones that had a trend to 

approximate the significance level (P=0.025) are presented 

in Table 3.

interaction effects
r-cgc Fa values
There was a statistically significant interaction between the 

diagnosis and the COMT genotypes for the R-CGC (Figure 1) 

FA values (F[1, 84] =8.215, P=0.005, partial η2=0.089), 

while the effects of sex, age, and estimated IQ were con-

trolled. In other words, the effect of ADHD diagnosis and 

COMT genotype on the FA values in the R-CGC was depen-

dent on each other. Therefore, an analysis of simple main 

effects for the diagnosis and COMT genotypes was performed 

with statistical significance using a Bonferroni adjustment, 

and the statistical significance was accepted at the P0.025 

level. There was a statistically significant difference in the 

mean R-CGC FA values between the val homozygotes and 

met carriers who had ADHD diagnosis (F[1, 84] =12.916, 

P=0.001, partial η2=0.133). For val homozygotes and met 

carriers with ADHD diagnosis, the mean R-CGC FA value 

difference was 0.018 (95% CI, 0.008–0.028) points, which 

was higher for met carriers than for val homozygotes. The 

simple main effect of COMT genotype on the mean R-CGC 

FA values for the control group of children was not statisti-

cally significant (F[1, 84] =1.268, P=0.263, partial η2=0.015; 

Figure 2).

There was also a statistically significant difference in 

the mean R-CGC FA values between patients with ADHD 

and controls who were val homozygous (F[1, 84] =12,278, 

P=0.001, partial η2=0.128). For patients with ADHD 

and controls with val/val genotype, the mean R-CGC 

FA value difference was 0.024 (95% CI, 0.011–0.038) 

points, which was higher for controls than for patients 

with ADHD. The simple main effect of the diagnosis on 

the mean R-CGC FA values for the met carriers was not 

statistically significant (F[1, 84] =0.180, P=0.672, partial 

η2=0.002; Figure 2).

r-cgc rD values
Similar to FA values, we also found a statistically significant 

interaction between the diagnosis and the COMT genotypes 

for RD values of the R-CGC (F[1, 86] =7.924, P=0.006, par-

tial η2=0.084). Again, the effects of sex, age, and estimated 

IQ were controlled. The assessment of the simple main effects 

revealed that there was a statistically significant difference 

in the mean CGC RD values between the val homozygotes 

and met carriers who had ADHD diagnosis (F[1, 86] =6.105, 

P=0.015, partial η2=0.066). ADHD-diagnosed met-carrier 

children had statistically significantly lower mean R-CGC 

RD value than the val homozygotes (0.018 [95% CI, 

0.004–0.033]). The simple main effect of COMT genotype on 

the mean R-CGC RD values for the control group of children 

was not statistically significant (F[1, 86] =3.025, P=0.085, 

partial η2=0.034; Figure 3).

The simple main effect of the diagnosis on the mean 

R-CGC RD values for the val homozygotes was statistically 

Table 3 The effect of aDhD on the white matter tracts

ADHD/control (total n=95)

L/R Control, mean ± SD  
(n=24)

ADHD, mean ± SD  
(n=71)

F P-value* σ2

Fa
FX 0.411±0.031 0.391±0.041 3.551 0.063 0.039
cerebellar peduncle r 0.565±0.025 0.571±0.020 4.639 0.034 0.050
cgc r 0.345±0.026 0.341±0.024 4.813 0.031 0.052
cgc l 0.365±0.024 0.358±0.027 5.936 0.017 0.063
rlic r 0.519±0.015 0.508±0.022 7.324 0.007 0.080

aD
sagittal striatum r 1.362±0.044 1.337±0.046 3.558 0.063 0.039
cgc r 1.123±0.039 1.101±0.047 3.768 0.055 0.041

FX/sT r 1.494±0.069 1.456±0.066 4.764 0.032 0.052

Notes: *MaNOVa, Bonferroni adjustment was used, bold values indicate P0.025 was accepted as significant. The effect of the COMT genotypes, age, sex, and estimated 
iQ was controlled.
Abbreviations: AD, axial diffusivity; ADHD, attention-deficit hyperactivity disorder; CGC, cingulum (cingulate gyrus); FA, fractional anisotropy; FX, fornix (column and 
body); MaNcOVa, multivariate analysis of covariance; l, left; r, right; rlic, retrolenticular part of the internal capsule; sT, stria terminalis; FX/sT: fornix (cres) stria 
terminalis.
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significant (F[1, 86] =5.348, P=0.023, partial η2=0.059). 

For patients with val homozygote ADHD and controls, 

the mean R-CGC RD value difference was 0.023 (95% CI, 

0.003–0.043) points, which was lower for controls than for 

patients with ADHD. The simple main effect of the diag-

nosis on the mean R-CGC RD values for the met carriers 

was not statistically significant (F[1, 86] =2.607, P=0.110, 

partial η2=0.029; Figure 3).

clinical symptom correlations
Pearson correlation analysis was performed to investigate 

the relationship between the DTI measures within each WM 

bundle and the teacher- and parent-rated inattention and 

hyperactivity scores assessed by Turgay DSM-IV Disruptive 

Behaviors Rating Scale. Only the WM bundles that were 

found to be statistically significantly differentiated between 

the ADHD and control groups were analyzed. According 

Figure 1 axial r-cgc bundle 3D, coronal, sagittal, and axial images.
Abbreviations: a, anterior; cgc, cingulum (cingulate gyrus); 3D, three dimensional; F, foot; h, head; l, left; r, right; P, posterior.

Figure 2 interaction effects- r-cgc Fa values.
Notes: Mean r-cgc Fa value difference was 0.018 (95% ci, 0.008–0.028) points, which was higher for met carriers than for val homozygotes in the aDhD group. For 
patients with aDhD and controls with val/val genotype, mean r-cgc Fa value difference was 0.024 (95% ci, 0.011–0.038) points, which was higher for controls than for 
patients with aDhD. *P=0.001.
Abbreviations: ADHD, attention-deficit hyperactive disorder; CGC, cingulum (cingulate gyrus); FA, fractional anisotropy; met, methionine; R, right; val, valine.
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Figure 3 interaction effects- r-cgc rD values.
Notes: ADHD-diagnosed met-carrier children had statistically significantly lower mean R-CGC RD value than val homozygotes 0.018 points (95% CI, 0.004–0.033). For 
patients with val homozygote aDhD and controls, mean r-cgc rD value difference was 0.023 (95% ci, 0.003–0.043) points, which was lower for controls than for patients 
with aDhD. *P0.025.
Abbreviations: ADHD, attention-deficit hyperactive disorder; CGC, cingulum (cingulate gyrus); met, methionine; R, right; RD, radial diffusivity; val, valine.

to this, the FA value of the FX was found to be negatively 

correlated with parent’s attention-deficit score (r=−0.23; 

P=0.021). Second, the AD value of the R-FX/ST was found 

to be negatively correlated with parent’s attention-deficit score 

(r=−0.21; P=0.035) and parent’s total attention-deficit hyper-

activity score (r=−0.23; P=0.023).

Discussion
The first finding of the current study was the interaction 

effect between the COMT polymorphism and the ADHD in 

the R-CGC. Accordingly, ADHD-diagnosed val homozygote 

children had statistically significantly lower mean R-CGC FA 

and higher RD values than ADHD-diagnosed met carriers, 

and val homozygote controls had higher mean FA and lower 

RD values in the R-CGC than patients with val homozygote 

ADHD. Second, as a main effect, we found evidence for 

altered WM connectivity according to the COMT polymor-

phism groups independent of the ADHD effect. Similarly, 

the met carriers had higher FA and AD values in the L-UNC 

and lower RD values in the L-PCR and L-PTR (including 

optic radiation) than the val homozygotes. Another main 

effect as a third finding of the study was the altered WM 

connectivity detected in some WM tracts among children 

with ADHD in comparison to controls, independent of the 

effect of the COMT genotypes. Children diagnosed with 

ADHD had lower FA values in the L-CGC and the R-RLIC 

than the controls. All these results were recorded independent 

of age, sex, and estimated IQ of the participants. Reduced FA 

is accepted as an indicator of WM damage or demyelination; 

increased RD is believed to be related to increased space 

between fibers, indicating demyelination;36 and decreased 

AD may suggest axonal injury.37

interaction between the COMT polymorphism and  
aDhD in the r-cgc 
The cingulum bundle connects the cingulate cortex to the 

prefrontal cortex, premotor regions, cortical association 

areas in the parietal and occipital lobes, thalamus, and 

hippocampus.22,38,39 It can be divided into two segments. 

The first is the upper part along the main cingulate gyrus 

(cingulum in the cingulate gyrus) and the second is the lower 

segment along the ventral side of the hippocampus (cingulum 

adjoining the hippocampus).40 The cingulate cortex is con-

sidered to have a significant role in the complex cognitive 

processing.41 Thus, this region is critical to the functions 

that are believed to be impaired in ADHD.22,42 Makris et al 

compared the cingulum bundle (together with SLF) of the 

adults who have a childhood history of ADHD with the 

controls. The authors found that the adults with childhood 

ADHD had significantly smaller FA values in these tracts 

relative to controls.22 It has been suggested that especially 

cingulum bundle (and SLF) is involved in the attention pro-

cessing and executive functioning.20–22 Therefore, lower FA 

value may be an indicator of an alteration in these attention 

and executive function networks in adults with childhood 

ADHD.22 Similarly, in another study, WM differences as 
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FA reductions were reported in the anterior cingulum of 

schizophrenia patients, indicating an impairment of the con-

nections between the anterior cingulate and the prefrontal 

cortex. This finding was suggested to be related to observed 

deficits in executive functioning in schizophrenia.43 Kasparek 

et al have recently reviewed the pattern of morphological and 

functional brain changes in children and adults diagnosed 

with ADHD.44 They demonstrated some consistent alterations 

such as reduced gray matter volume, disrupted WM integrity, 

decreased activity, and functional connectivity in the anterior 

cingulum of both adult and child patients.44

These findings from the literature emphasize the impor-

tance of the CGC for the executive functions and attention 

in the context of ADHD. Thus, we confirmed our hypothesis 

regarding the interaction expectation in the CGC. The ADHD 

and COMT polymorphism interaction that we report in the 

R-CGC may be explained with probable genetic vulnerability 

to the disorder. In children who are at genetic risk, decreased 

FA and increased RA may take a role in the development 

of the disorder. In other words, an interaction mechanism 

may drive the association between ADHD and the val risk 

variant of COMT polymorphism, causing a disruption in 

the WM integrity. For example, the val/val genotype of 

COMT polymorphism could cause reduced myelination in 

the R-cingulum (cingulate cortex) if the child is vulnerable 

to ADHD, or the children with ADHD may develop WM 

alterations in this particular region if they are homozygote 

for the val allele. Konrad and Eickhoff mentioned that both 

genetic and environmental factors might contribute to dis-

ruptions in connections between different brain regions.45 

In a similar way, van Ewijk et al discussed various factors 

underlying separate mechanisms such as gene–environment 

associations that result in the pathology.46 We consider that 

the interaction of the COMT risk variant with the ADHD 

diagnosis in the R-cingulum (cingulate cortex) may be sig-

nificant from this perspective of view.

altered WM connectivity according to the COMT 
val158met polymorphism genotypes 
We reported that COMT polymorphism was related to 

alterations in the integrity of WM in the L-UNC, L-PCR, 

and L-PTR (including optic radiation) independent of the 

ADHD-related effects. The val homozygotes had unfavor-

able DTI measurements such as reduced FA and AD values 

or increased RD values. In line with this, two conclusions 

can be drawn. The first is that the COMT genotype affects 

certain regions of the brain WM, regardless of whether the 

child has ADHD; the second is that the lower dopaminergic 

state may have an impairment effect on the WM connectiv-

ity. These findings that we report may be an indicator of 

gene-related neurodevelopmental changes associated with 

the COMT genotypes. As it was stated in the introduction 

section, met variant of the COMT enzyme has up to fourfold 

reduced activity which leads to a higher dopaminergic state 

in the cerebral areas, especially in the prefrontal cortex.10,47 

Although conflicting literature findings exist, higher dop-

aminergic levels are found to be associated with the improved 

performance on the cognitive tasks, in healthy adults and 

children,48–50 as well as adults with ADHD.51 The COMT 

val158met polymorphism influences the cognition probably 

by affecting dopamine regulation in the brain.13 The literature 

provides evidence for the neurotrophic effects of dopamine 

on the neuronal growth, differentiation, and survival.52–55 

The lower FA and AD values in the val homozygotes that 

we found may be related to an impaired axonal integrity 

or delayed myelination and maturation.37,56 Zinkstok et al13 

investigated the COMT val158met polymorphism and the brain 

morphometry in the young adults and reported age-related 

variations in the gray and WM densities among the val car-

riers. The authors suggested that the low synaptic dopamine 

levels due to the high-activity val allele may be associated 

with a relative delay in the brain maturation (a relative delay 

in the gray matter loss and/or WM increase).13 In another 

study, Honea et al12 reported that the val risk variant of COMT 

val158met polymorphism affects the hippocampal and dorso-

lateral prefrontal gray matter volume. The authors discussed 

that the complex genetic variation in COMT might impact the 

gray matter volume, possibly through neurotrophic or neu-

rotoxic effects of varying levels of dopamine.12 In our study 

group of children, it is possible that the low dopamine levels 

in the val homozygotes might have an unfavorable impact on 

the neuronal growth and maturation, concerning the essential 

neurotrophic effects of dopamine. Thus, the maturation of 

the WM tracts might have been delayed as suggested by 

Zinkstok et al.13 Consequently, our initial expectation was 

met by the worse DTI measurements that we recorded for the 

val homozygotes in comparison to the met carriers.

DTI technique is a relatively new method which gives 

an opportunity to investigate the WM structure and brain 

networks. In the literature, there is a limited number of 

studies that examined WM-related alterations according 

to COMT polymorphism groups. One study, conducted 

in healthy children and adolescents, examined the COMT 

genotype-related alterations in the prefrontal WM path-

ways.16 In contrast to our findings, the authors reported that 

the val allele was associated with significantly elevated FA 
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and reduced AD and RD values. They concluded that high 

levels of brain dopamine were associated with reduced brain 

myelination that might antecede to alterations in cognitive 

and affective processing that have been found to differ 

among COMT genotypes. Two other studies investigated 

for an association of WM integrity with COMT val158met 

polymorphism by using DTI and again reported worse results 

regarding DTI parameters in the met carriers. Accordingly, 

one study showed a reduction in the FA values in the pre-

frontal cortex of the met carrier substance users,18 and the 

other one demonstrated decreased FA and AD values in the 

temporal lobe of met-carrier major depression patients.17 In 

another study, Liu et al investigated the effects of COMT 

haplotypes on the WM integrity in the bilateral prefrontal 

lobes and IQ. They found that the effect is nonlinear and fit 

an inverted U-model, which may indicate that intelligence-

related brain WM integrity is optimal only within a narrow 

range of dopamine activity, with either too little or too much 

dopamine having a relatively deleterious effect.57 The authors 

also added that the val homozygous subjects had worse WM 

integrity than the met carriers (in the R-corticospinal tract), 

similar to that we reported for the val homozygotes.57 These 

results that seem conflicting at first glance may be related 

to the need for an optimum range of extracellular dopamine 

for the neuronal structural integrity implying both over- and 

under-stimulation with dopamine may result in impaired 

neuronal survival and growth.12 It should be noted that, 

although the optimum levels of dopamine are beneficial, the 

research data also support the neurotoxic effects of excess 

extracellular dopamine.58–60

Because the cognitive functions are related to the dop-

aminergic system, we hypothesized that COMT polymor-

phism would be affecting WM tracts that are involved in 

the cognitive processes. The UNC connects the frontal and 

temporal lobes,38 and is known to be involved in some cog-

nitive functions (eg, verbal memory and immediate recall 

of word pairs).61–63 The integrity of UNC has been reported 

to be disturbed in Alzheimer disease,64 and the severity of 

cognitive functions was found to be related to the impair-

ment in the UNC as measured by DTI.63 The corona radiata 

and the PTR include corticothalamic and thalamocortical 

fibers.38 The contribution of the thalamus to cognitive pro-

cesses, including attention, speed of information processing, 

and memory, has been evident,65,66 and the functions of the 

thalamus are brought about by widely distributed thalamo-

cortical connections.67 Our hypothesis has been supported 

by the statistical significance that we found in the L-UNC, 

L-PCR, and L-PTR.

altered WM connectivity in children with aDhD 
in comparison to the controls 
Regardless of their genotype, children with ADHD exhib-

ited lower FA values in the R-RLIC and the L-CGC than 

the control group of children. This finding of reduced FA 

values in the ADHD group was an expected result, since FA 

is accepted as an index of axonal integrity36,56 although there 

were inconsistent results in the literature as either decreased 

or increased measures for FA.4 We initially hypothesized that 

children with ADHD would have different diffusion prop-

erties in comparison to healthy controls, and these findings 

have confirmed our hypothesis.

A recent meta-analysis study compared the DTI findings 

of patients with ADHD with healthy controls to further reveal 

the neurobiological underpinnings of the disorder.4 They 

reported WM alterations most consistently in the bilateral 

internal capsule, L-cerebellum, R-anterior corona radiata, and 

R-forceps minor. We also found the RLIC (R side) among 

the brain regions which exhibited ADHD-related alterations. 

This part of the internal capsule, being a projection fiber, con-

stitutes mainly the PTR (corticothalamic and thalamocortical 

fibers, including the optic radiation) and can also include 

the parieto-, occipito-, and temporopontine fibers.38 Thus, it 

plays a significant role in the thalamo-cortical information 

processing. The thalamo-cortico-striatal networks are blamed 

in the etiopathogenesis of ADHD and reward system-related 

ADHD behaviors.68,69 In this context, the impaired WM con-

nectivity that we report here may be a noteworthy finding.

In addition to the gene–disorder interaction effect that we 

found in the R-CGC, we also showed a simple main effect 

of ADHD on the L side of the CGC. CGC, being a potential 

target region for a gene–disorder interaction, may be an 

intersection area in the etiopathogenesis of the disorder.

One of our study hypotheses was concerning the expec-

tation to find a correlation between DTI-measured WM 

microstructure abnormalities and parent- and teacher-rated 

ADHD symptoms (inattention, hyperactivity/impulsivity). 

In line with our expectations, FA of the FX was found to be 

negatively correlated with the parent-rated inattention score, 

and AD of the R-FX/ST was found to be negatively correlated 

with the parent-rated inattention score and parent-rated total 

inattention–hyperactivity score. The fornix and the cingulum 

bundles are the most prominent WM fiber tracts within the 

limbic system.43

The limbic system, which is related to motivation, emo-

tion, and reward, is regulated by higher cortical centers 

such as the prefrontal cortex. It appears to have a major role 

in the pathophysiology and pharmacotherapy of ADHD.70 

 
N

eu
ro

ps
yc

hi
at

ric
 D

is
ea

se
 a

nd
 T

re
at

m
en

t d
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/ b

y 
19

3.
25

5.
53

.2
03

 o
n 

10
-F

eb
-2

02
1

F
or

 p
er

so
na

l u
se

 o
nl

y.

Powered by TCPDF (www.tcpdf.org)

                               1 / 1

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2016:12 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

979

WM alterations related to aDhD and COMT val158met polymorphism

Although it was not at a statistical significance level, patients 

with ADHD had worse WM integrity (lower FA or AD 

values) in the FX and FX/ST that approximated to the sta-

tistical significance. This trend for a significant disturbance 

in the fornix may be noteworthy if we consider the role 

of the fornix in the limbic system, and the relation of the 

limbic system with ADHD pathophysiology, regarding the 

motivation-related behavior, emotions, and reward-related 

circuits. Additionally, the fornix carries association fibers 

to the memory-related structures such as the mammillary 

bodies and the hippocampus, and it has been known to play 

a role in the memory, especially recall memory.71,72 The 

negative correlation of FA and AD values of the fornix with 

the parent-rated inattention and total ADHD (inattention and 

hyperactivity) symptom scores supports the WM alteration 

trend in the area from a clinical perspective, as well. Compat-

ibly, Davenport et al compared 10–20 year-old patients with 

ADHD with the healthy controls and demonstrated lower FA 

values in the L-posterior fornix of patients with ADHD.73 

Similarly, Abdul-Rahman et al found significant reduction in 

the mean R-fornix FA values based on the region-of-interest 

analysis and a trend for a decreased FA and increased RD 

along the R-fornix bundle by tract-based analysis in patients 

with schizophrenia.43

Limitations and conclusion
The findings of the current study revealed that the COMT 

gene val158met polymorphism variants might affect the brain 

development independent of the effects of ADHD. Some 

regions of the WM matter were altered in patients with 

ADHD in comparison to controls, as well. In addition to 

these simple main effects, we showed an interaction effect 

in the R-CGC, revealing that the effects of COMT genotype 

and the ADHD diagnosis are linked to each other. ADHD-

diagnosed val-homozygote children had altered WM con-

nectivity in this region. When interpreting these results, some 

important limitations should be kept in mind. First of all, we 

should note a limitation related to the DTI technique and the 

measured parameters. DTI has been found to be a precious 

tool for providing specific indices of neuropathology,74 and 

diffusion parameters are quite sensitive to tissue properties 

such as myelination, axonal density, and orientation. How-

ever, no DTI measure is specifically sensitive to a given 

property.46,75 It should also be added that the interpretation 

of the abnormal DTI parameters in psychiatric disorders is 

somewhat speculative.46,74,75 As van Ewijk et al mentioned, 

reduced FA values may be an indication of disrupted WM 

integrity such as demyelination; in another region with 

crossing fibers, it may represent neuronal branching.4,46 

Currently, the inconsistencies between the studies and the 

lack of straightforward interpretation of the DTI parameters 

create a challenge in the DTI research. This problem is 

especially prominent in the ADHD, as a broad-spectrum 

disorder with phenotypic heterogeneity.4,46,76 Second, 

limitations related to our study sample characteristics and 

study methods should be noted. In the ADHD group, ODD 

comorbidity was allowed, although all the other psychiatric 

and medical conditions were excluded. Another limitation 

was related to the subject recruitment stage. The healthy 

control subjects and the patients were not matched in a 

case-to-case design regarding age, sex, and IQ. Neverthe-

less, the group comparisons of these parameters yielded no 

statistically significant differences. Finally, our study did not 

examine the cerebellar tracts. Because of the potential role 

of the cerebellum in the etiopathogenesis of ADHD, future 

studies should include a more focused examination of the 

cerebellar pathways.

Conclusively, the findings of the current study contribute to 

our understanding in terms of possible genetic underpinnings 

of WM abnormalities, which is still an under-investigated 

area. Future studies that will be conducted to investigate the 

neurotransmitter system affecting genes, such as COMT, can 

provide insight into the neurochemical modulation of the 

development of WM. More investigations are needed to be 

carried out to clarify the relationship between the structure 

of WM pathways and COMT genotype in the context of 

ADHD. In addition, longitudinal studies will provide extra 

information regarding the COMT gene and ADHD-related 

WM abnormalities in time.
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