Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10017
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBeyhan, Selami-
dc.contributor.authorKavaklıoğlu, Kadir-
dc.date.accessioned2019-08-16T13:09:23Z-
dc.date.available2019-08-16T13:09:23Z-
dc.date.issued2015-
dc.identifier.issn0018-9499-
dc.identifier.urihttps://hdl.handle.net/11499/10017-
dc.identifier.urihttps://doi.org/10.1109/TNS.2015.2462126-
dc.description.abstractThis paper proposes artificial neural network and fuzzy system-based extreme learning machines (ELM) for offline and online modeling of U-tube steam generators (UTSG). Water level of UTSG systems is predicted in a one-step-ahead fashion using nonlinear autoregressive with exogenous input (NARX) topology. Modeling data are generated using a well-known and widely accepted dynamic model reported in the literature. Model performances are analyzed with different number of neurons for the neural network and with different number of rules for the fuzzy system. UTSG models are built at different reactor power levels as well as full range that corresponds to all reactor operating powers. A quantitative comparison of the models are made using the root-mean-squared error (RMSE) and the minimum-descriptive-length (MDL) criteria. Furthermore, conventional back propagation learning-based neural and fuzzy models are also designed for comparing ELMs to classical artificial models. The advantages and disadvantages of the designed models are discussed. © 1963-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Transactions on Nuclear Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectExtreme learning machineen_US
dc.subjectfuzzy systemen_US
dc.subjectminimum-descriptive-length (MDL)en_US
dc.subjectneural-networken_US
dc.subjectonline and offline identificationen_US
dc.subjectroot-mean-squared error (RMSE)en_US
dc.subjectU-tube steam generator (UTSG)en_US
dc.subjectBackpropagationen_US
dc.subjectFuzzy inferenceen_US
dc.subjectFuzzy logicen_US
dc.subjectFuzzy systemsen_US
dc.subjectKnowledge acquisitionen_US
dc.subjectLearning systemsen_US
dc.subjectMean square erroren_US
dc.subjectNeural networksen_US
dc.subjectWater levelsen_US
dc.subjectBackpropagation learningen_US
dc.subjectComprehensive modelen_US
dc.subjectModel performanceen_US
dc.subjectNon-linear autoregressive with exogenousen_US
dc.subjectQuantitative comparisonen_US
dc.subjectRoot mean squared errorsen_US
dc.subjectU-tube steam generatorsen_US
dc.subjectSteam generatorsen_US
dc.titleComprehensive modeling of U-tube steam generators using extreme learning machinesen_US
dc.typeArticleen_US
dc.identifier.volume62en_US
dc.identifier.issue5en_US
dc.identifier.startpage2245-
dc.identifier.startpage2245en_US
dc.identifier.endpage2254en_US
dc.identifier.doi10.1109/TNS.2015.2462126-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84957956309en_US
dc.identifier.wosWOS:000363243200015en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

15
checked on Nov 21, 2024

Page view(s)

52
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.