Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10106
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWeathers, Danny-
dc.contributor.authorBardakçı, Ahmet-
dc.date.accessioned2019-08-16T13:11:32Z-
dc.date.available2019-08-16T13:11:32Z-
dc.date.issued2015-
dc.identifier.issn2050-3326-
dc.identifier.urihttps://hdl.handle.net/11499/10106-
dc.identifier.urihttps://doi.org/10.1057/jma.2015.6-
dc.description.abstractBecause careless responding to questionnaire items can be quite common, and even low rates of careless responding can substantially impact some analyzes, researchers have been advised to remove careless respondents before data analysis. However, identifying these respondents is a non-trivial task. In the context of multi-item, unidimensional scales, it has been suggested that response variance may hold information about careless responding. This notion was tested in the current research with two studies. Data collected from respondents indicates that people responding carelessly display more variance in their responses than people responding with more effort. Given this finding, a procedure which uses measures of response variance and cluster analysis to identify careless respondents was developed. The effectiveness of the procedure with different specifications was tested with simulated data and validated with data from actual respondents. On the basis of the results, we advocate using the procedure with specifications that conservatively identify careless respondents. Such an approach will identify the most extreme careless respondents, while maximizing the retention of careful, honest respondents. We discuss the advantages the developed procedure has over existing procedures for identifying careless respondents. © 2015 Macmillan Publishers Ltd.en_US
dc.language.isoenen_US
dc.publisherPalgrave Macmillan Ltd.en_US
dc.relation.ispartofJournal of Marketing Analyticsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCareless respondingen_US
dc.subjectCluster analysisen_US
dc.subjectMulti-item scaleen_US
dc.subjectRandom respondingen_US
dc.subjectResponse stylesen_US
dc.subjectResponse varianceen_US
dc.titleCan response variance effectively identify careless respondents to multi-item, unidimensional scales?en_US
dc.typeArticleen_US
dc.identifier.volume3en_US
dc.identifier.issue2en_US
dc.identifier.startpage96-
dc.identifier.startpage96en_US
dc.identifier.endpage107en_US
dc.identifier.doi10.1057/jma.2015.6-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85031490164en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.dept08.04. Business Administration-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Oct 13, 2024

Page view(s)

36
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.