Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10122
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzan, Cenk-
dc.contributor.authorBaşkan, Özgür.-
dc.contributor.authorHaldenbilen, Soner-
dc.contributor.authorCeylan, Halim-
dc.date.accessioned2019-08-16T13:11:55Z
dc.date.available2019-08-16T13:11:55Z
dc.date.issued2015-
dc.identifier.issn0968-090X-
dc.identifier.urihttps://hdl.handle.net/11499/10122-
dc.identifier.urihttps://doi.org/10.1016/j.trc.2015.03.010-
dc.description.abstractThis study proposes Reinforcement Learning (RL) based algorithm for finding optimum signal timings in Coordinated Signalized Networks (CSN) for fixed set of link flows. For this purpose, MOdified REinforcement Learning algorithm with TRANSYT-7F (MORELTRANS) model is proposed by way of combining RL algorithm and TRANSYT-7F. The modified RL differs from other RL algorithms since it takes advantage of the best solution obtained from the previous learning episode by generating a sub-environment at each learning episode as the same size of original environment. On the other hand, TRANSYT-7F traffic model is used in order to determine network performance index, namely disutility index. Numerical application is conducted on medium sized coordinated signalized road network. Results indicated that the MORELTRANS produced slightly better results than the GA in signal timing optimization in terms of objective function value while it outperformed than the HC. In order to show the capability of the proposed model for heavy demand condition, two cases in which link flows are increased by 20% and 50% with respect to the base case are considered. It is found that the MORELTRANS is able to reach good solutions for signal timing optimization even if demand became increased. © 2015 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofTransportation Research Part C: Emerging Technologiesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCoordinated signalized networken_US
dc.subjectReinforcement learningen_US
dc.subjectSignal timing optimizationen_US
dc.subjectTRANSYT-7Fen_US
dc.subjectAlgorithmsen_US
dc.subjectLearning algorithmsen_US
dc.subjectTiming circuitsen_US
dc.subjectTraffic controlen_US
dc.subjectDemand conditionsen_US
dc.subjectLink-flowen_US
dc.subjectNumerical applicationsen_US
dc.subjectObjective function valuesen_US
dc.subjectOptimum signalsen_US
dc.subjectRoad networken_US
dc.subjectTraffic modelen_US
dc.subjectalgorithmen_US
dc.subjectlearningen_US
dc.subjectnumerical modelen_US
dc.subjectoptimizationen_US
dc.subjectroad transporten_US
dc.subjectsignalen_US
dc.subjecttransportation systemen_US
dc.titleA modified reinforcement learning algorithm for solving coordinated signalized networksen_US
dc.typeArticleen_US
dc.identifier.volume54en_US
dc.identifier.startpage40
dc.identifier.startpage40en_US
dc.identifier.endpage55en_US
dc.identifier.doi10.1016/j.trc.2015.03.010-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84925063720en_US
dc.identifier.wosWOS:000353871700003en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

38
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

35
checked on Nov 15, 2024

Page view(s)

64
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.