Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10352
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtllıhan, Özlem Girgin-
dc.contributor.authorÜnver, M.-
dc.date.accessioned2019-08-16T13:16:31Z-
dc.date.available2019-08-16T13:16:31Z-
dc.date.issued2015-
dc.identifier.issn1072-947X-
dc.identifier.urihttps://hdl.handle.net/11499/10352-
dc.identifier.urihttps://doi.org/10.1515/gmj-2015-0025-
dc.description.abstractThe classical Korovkin approximation theory deals with the convergence of a given sequence {L n } of positive linear operators on C[a,b]. When the sequence of positive linear operators does not converge to the identity operator it may be useful to use some summability methods. In this paper, we study some Korovkin type approximation theorems for the sequences of convolution operators via the Abel method, which is a sequence-to-function transformation. We also deal with the rate of Abel convergence. © 2015 by De Gruyter 2015.en_US
dc.language.isoenen_US
dc.publisherWalter de Gruyter GmbHen_US
dc.relation.ispartofGeorgian Mathematical Journalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAbel convergenceen_US
dc.subjectconvolution operatoren_US
dc.subjectKorovkin type approximation theoremen_US
dc.titleAbel transforms of convolution operatorsen_US
dc.typeArticleen_US
dc.identifier.volume22en_US
dc.identifier.issue3en_US
dc.identifier.startpage323-
dc.identifier.startpage323en_US
dc.identifier.endpage329en_US
dc.identifier.doi10.1515/gmj-2015-0025-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84941026637en_US
dc.identifier.wosWOS:000360882800003en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 16, 2024

Page view(s)

18
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.