Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10548
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaysal, A.-
dc.contributor.authorKöroğlu, Selim-
dc.contributor.authorOguz, Y.-
dc.contributor.authorKaysal, K.-
dc.date.accessioned2019-08-16T13:31:38Z
dc.date.available2019-08-16T13:31:38Z
dc.date.issued2018-
dc.identifier.isbn9781538641842-
dc.identifier.urihttps://hdl.handle.net/11499/10548-
dc.identifier.urihttps://doi.org/10.1109/ISMSIT.2018.8567270-
dc.description.abstractShort-term load forecasting is an important issue for the electric power system in efficiently managing the network and reducing operating costs. In addition, with the recent improvements in distributed generation and storage systems, this has become even more important. Access to the high-resolution dataset derived from smart counters allows new forecasting strategies to evolve to match distributed load on the demand side. In this study, short-term load forecasting (STF) of a small region was performed using Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) methods. For load forecasting, the electricity consumption and temperature data for the year 2017 were used as input to the network and next hour demand was predicted. The smallest forecasting error is investigated with the Mean Absolute Percent Error (MAPE) and Root Mean Square Error (RMSE) performance criteria. It showed that RMSE is better than ANFIS with 616.2753 and MAPE 8.8688 prediction error. © 2018 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectadaptive neuro-fuzzy inference systemen_US
dc.subjectartificial neural networksen_US
dc.subjectshort term load forecastingen_US
dc.subjectDigital storageen_US
dc.subjectElectric load forecastingen_US
dc.subjectElectric power plant loadsen_US
dc.subjectElectric power systemsen_US
dc.subjectErrorsen_US
dc.subjectForecastingen_US
dc.subjectFuzzy neural networksen_US
dc.subjectFuzzy systemsen_US
dc.subjectMean square erroren_US
dc.subjectNeural networksen_US
dc.subjectOperating costsen_US
dc.subjectAdaptive neuro-fuzzy inference systemen_US
dc.subjectDistributed generation and storageen_US
dc.subjectDistributed loadsen_US
dc.subjectElectricity-consumptionen_US
dc.subjectForecasting erroren_US
dc.subjectPerformance criterionen_US
dc.subjectRoot mean square errorsen_US
dc.subjectShort term load forecastingen_US
dc.subjectFuzzy inferenceen_US
dc.titleArtificial Neural Networks and Adaptive Neuro-Fuzzy Inference Systems Approaches to Forecast the Electricity Data for Load Demand, an Analysis of Dinar District Caseen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/ISMSIT.2018.8567270-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85060803238en_US
dc.identifier.wosWOS:000467794200087en_US
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 16, 2024

Page view(s)

28
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.