Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10567
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIsleroglu, H.-
dc.contributor.authorBeyhan, Selami-
dc.date.accessioned2019-08-16T13:31:44Z
dc.date.available2019-08-16T13:31:44Z
dc.date.issued2018-
dc.identifier.issn0145-8876-
dc.identifier.urihttps://hdl.handle.net/11499/10567-
dc.identifier.urihttps://doi.org/10.1111/jfpe.12912-
dc.description.abstractIn this article, nonlinear regressor models namely polynomial regressor, artificial neural-network (ANN) and least-squares support vector machine (LS-SVM) were designed and applied to model the drying kinetics and change of the antioxidant properties of mahaleb puree during infrared drying process. Temperature and time were used as the model inputs and moisture ratio, antioxidant capacity and total anthocyanin content were the outputs of nonlinear regressors. The regressor models were compared in terms of the root mean-squared-error (RMSE) and minimum-descriptive-length (MDL) criteria. According to statistical selection criteria, LS-SVM was the best model to describe the infrared drying kinetics of mahaleb puree with the lowest RMSE and MDL values. ANN with Levenberg-Marquardth optimization gave the best results to predict antioxidant capacity and total anthocyanin content during infrared drying process of mahaleb puree. Practical applications: (a) Design and analysis of intelligent models for modeling of drying processes. (b) Design of automatic drying equipments by embedding intelligent models. (c) Prediction of moisture ratio, antioxidant capacity and total anthocyanin of drying mahaleb puree at any time and temperature. © 2018 Wiley Periodicals, Inc.en_US
dc.language.isoenen_US
dc.publisherBlackwell Publishing Inc.en_US
dc.relation.ispartofJournal of Food Process Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnthocyaninsen_US
dc.subjectAntioxidantsen_US
dc.subjectDryingen_US
dc.subjectMean square erroren_US
dc.subjectMoistureen_US
dc.subjectNeural networksen_US
dc.subjectSupport vector machinesen_US
dc.subjectAntioxidant capacityen_US
dc.subjectAntioxidant propertiesen_US
dc.subjectDesign and analysisen_US
dc.subjectIntelligent modelsen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectRoot mean squared errorsen_US
dc.subjectStatistical selectionen_US
dc.subjectTotal anthocyanin contentsen_US
dc.subjectInfrared dryingen_US
dc.titleIntelligent models based nonlinear modeling for infrared drying of mahaleb pureeen_US
dc.typeArticleen_US
dc.identifier.volume41en_US
dc.identifier.issue8en_US
dc.identifier.doi10.1111/jfpe.12912-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85055626758en_US
dc.identifier.wosWOS:000461109100034en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 21, 2024

Page view(s)

42
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.