Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10723
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKavaklıoğlu, Kadir-
dc.date.accessioned2019-08-16T13:32:36Z
dc.date.available2019-08-16T13:32:36Z
dc.date.issued2018-
dc.identifier.issn2352-7102-
dc.identifier.urihttps://hdl.handle.net/11499/10723-
dc.identifier.urihttps://doi.org/10.1016/j.jobe.2018.04.018-
dc.description.abstractPartial least squares method was used to model residential building heating and cooling loads. These loads were modeled as functions of eight input variables such as relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. The data for the models were taken from the literature and they consisted of values obtained through a commercial software package. Model validation was performed using k-fold cross validation method. Model validation was also performed using an analysis of total sum of squares of the data explained by the partial least squares latent variables. Validated models were compared against ordinary least squares models for heating and cooling loads, respectively. These models were used to determine the most influential input variables so that efficient building designs can be made. The results indicated that it is feasible to apply partial least squares regression to heating and cooling loads; and significant reduction in dimensionality may be achieved using the importance information provided by this method. © 2018 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofJournal of Building Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCooling loaden_US
dc.subjectHeating loaden_US
dc.subjectLatent variablesen_US
dc.subjectPartial least squaresen_US
dc.subjectResidential buildingsen_US
dc.subjectAir conditioningen_US
dc.subjectArchitectural designen_US
dc.subjectCoolingen_US
dc.subjectGlazesen_US
dc.subjectHeatingen_US
dc.subjectHousingen_US
dc.subjectLatent variableen_US
dc.subjectPartial least square (PLS)en_US
dc.subjectResidential buildingen_US
dc.subjectLeast squares approximationsen_US
dc.titleRobust modeling of heating and cooling loads using partial least squares towards efficient residential building designen_US
dc.typeArticleen_US
dc.identifier.volume18en_US
dc.identifier.startpage467
dc.identifier.startpage467en_US
dc.identifier.endpage475en_US
dc.identifier.doi10.1016/j.jobe.2018.04.018-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85046123345en_US
dc.identifier.wosWOS:000432780300044en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.languageiso639-1en-
item.fulltextNo Fulltext-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

21
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

21
checked on Nov 24, 2024

Page view(s)

54
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.