Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10798
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErtenlice, Ökkeş-
dc.contributor.authorKalayci, C.B.-
dc.date.accessioned2019-08-16T13:32:59Z
dc.date.available2019-08-16T13:32:59Z
dc.date.issued2018-
dc.identifier.issn2210-6502-
dc.identifier.urihttps://hdl.handle.net/11499/10798-
dc.identifier.urihttps://doi.org/10.1016/j.swevo.2018.01.009-
dc.description.abstractIn portfolio optimization (PO), often, a risk measure is an objective to be minimized or an efficient frontier representing the best tradeoff between return and risk is sought. In order to overcome computational difficulties of this NP-hard problem, a growing number of researchers have adopted swarm intelligence (SI) methodologies to deal with PO. The main PO models are summarized, and the suggested SI methodologies are analyzed in depth by conducting a survey from the recent published literature. Hence, this study provides a review of the SI contributions to PO literature and identifies areas of opportunity for future research. © 2018 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofSwarm and Evolutionary Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial bee colonyen_US
dc.subjectMetaheuristicsen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectPortfolio optimizationen_US
dc.subjectSwarm intelligenceen_US
dc.subjectArtificial intelligenceen_US
dc.subjectComputational complexityen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectFinancial data processingen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectRisk assessmenten_US
dc.subjectSurveysen_US
dc.subjectArtificial bee coloniesen_US
dc.subjectEfficient frontieren_US
dc.subjectMeta heuristicsen_US
dc.subjectRisk measuresen_US
dc.subjectOptimizationen_US
dc.titleA survey of swarm intelligence for portfolio optimization: Algorithms and applicationsen_US
dc.typeArticleen_US
dc.identifier.volume39en_US
dc.identifier.startpage36
dc.identifier.startpage36en_US
dc.identifier.endpage52en_US
dc.identifier.doi10.1016/j.swevo.2018.01.009-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85041686965en_US
dc.identifier.wosWOS:000428826000003en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept10.09. Industrial Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

133
checked on Mar 8, 2025

WEB OF SCIENCETM
Citations

99
checked on Mar 7, 2025

Page view(s)

184
checked on Feb 8, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.