Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/10798
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ertenlice, Ökkeş | - |
dc.contributor.author | Kalayci, C.B. | - |
dc.date.accessioned | 2019-08-16T13:32:59Z | |
dc.date.available | 2019-08-16T13:32:59Z | |
dc.date.issued | 2018 | - |
dc.identifier.issn | 2210-6502 | - |
dc.identifier.uri | https://hdl.handle.net/11499/10798 | - |
dc.identifier.uri | https://doi.org/10.1016/j.swevo.2018.01.009 | - |
dc.description.abstract | In portfolio optimization (PO), often, a risk measure is an objective to be minimized or an efficient frontier representing the best tradeoff between return and risk is sought. In order to overcome computational difficulties of this NP-hard problem, a growing number of researchers have adopted swarm intelligence (SI) methodologies to deal with PO. The main PO models are summarized, and the suggested SI methodologies are analyzed in depth by conducting a survey from the recent published literature. Hence, this study provides a review of the SI contributions to PO literature and identifies areas of opportunity for future research. © 2018 Elsevier B.V. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartof | Swarm and Evolutionary Computation | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial bee colony | en_US |
dc.subject | Metaheuristics | en_US |
dc.subject | Particle swarm optimization | en_US |
dc.subject | Portfolio optimization | en_US |
dc.subject | Swarm intelligence | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | Computational complexity | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.subject | Financial data processing | en_US |
dc.subject | Particle swarm optimization (PSO) | en_US |
dc.subject | Risk assessment | en_US |
dc.subject | Surveys | en_US |
dc.subject | Artificial bee colonies | en_US |
dc.subject | Efficient frontier | en_US |
dc.subject | Meta heuristics | en_US |
dc.subject | Risk measures | en_US |
dc.subject | Optimization | en_US |
dc.title | A survey of swarm intelligence for portfolio optimization: Algorithms and applications | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 39 | en_US |
dc.identifier.startpage | 36 | |
dc.identifier.startpage | 36 | en_US |
dc.identifier.endpage | 52 | en_US |
dc.identifier.doi | 10.1016/j.swevo.2018.01.009 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85041686965 | en_US |
dc.identifier.wos | WOS:000428826000003 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 10.09. Industrial Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
133
checked on Mar 8, 2025
WEB OF SCIENCETM
Citations
99
checked on Mar 7, 2025
Page view(s)
184
checked on Feb 8, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.