Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10832
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDikbaş, Fatih-
dc.date.accessioned2019-08-16T13:33:09Z
dc.date.available2019-08-16T13:33:09Z
dc.date.issued2018-
dc.identifier.issn0920-4741-
dc.identifier.urihttps://hdl.handle.net/11499/10832-
dc.identifier.urihttps://doi.org/10.1007/s11269-017-1886-0-
dc.description.abstractSpearman’s rank correlation coefficient might be the best known nonparametric measure of association currently in use. It assesses the linear relationships between the ranks of monotonically related variables even if the relationship between the variables is not linear. This study presents a new method for calculating two-dimensional (horizontal and vertical) rank correlation coefficients between matrices composed of variables which are not necessarily in linear association. The matrices contain the ranks of measurements instead of raw values. The averages of all rows are used for calculating the horizontal rank correlation and the averages of all columns are used for calculating the vertical rank correlation instead of considering the averages of the whole matrices. This approach enables a separate determination of the degree of horizontal and vertical relationships between the compared data matrices by using the horizontal and vertical variance and covariance values that constitute the base of the two-dimensional correlation method. The presented method is first applied on 5 simple hypothetical matrices and then on the monthly total precipitation records of 6 stations in southwest Turkey. The results have shown that the presented rank correlation approach successfully assesses the two-dimensional associations between the hypothetical matrices and time series data like precipitation, provides a measure for exactly determining the monotonic relationships not determined by the conventional Pearson’s and Spearman’s correlation approaches, it is much more robust to outliers and normality is not a prerequisite. The software developed for calculating two-dimensional rank correlation coefficients is freely provided together with this paper. © 2018, Springer Science+Business Media B.V., part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.ispartofWater Resources Managementen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectResistance to outliersen_US
dc.subjectTime series analysisen_US
dc.subjectTwo-dimensional covarianceen_US
dc.subjectTwo-dimensional rank correlationen_US
dc.subjectTwo-dimensional varianceen_US
dc.subjectStatisticsen_US
dc.subjectLinear associationsen_US
dc.subjectLinear relationshipsen_US
dc.subjectRank correlationen_US
dc.subjectRank correlation coefficienten_US
dc.subjectTotal precipitationen_US
dc.subjectTwo-dimensional correlationen_US
dc.subjectVertical relationshipsen_US
dc.subjectMatrix algebraen_US
dc.subjectcorrelationen_US
dc.subjectoutlieren_US
dc.subjectprecipitation (climatology)en_US
dc.subjectrankingen_US
dc.subjectrecorden_US
dc.subjecttime series analysisen_US
dc.subjecttwo-dimensional modelingen_US
dc.subjectTurkeyen_US
dc.titleA New Two-Dimensional Rank Correlation Coefficienten_US
dc.typeArticleen_US
dc.identifier.volume32en_US
dc.identifier.issue5en_US
dc.identifier.startpage1539
dc.identifier.startpage1539en_US
dc.identifier.endpage1553en_US
dc.identifier.doi10.1007/s11269-017-1886-0-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85042088100en_US
dc.identifier.wosWOS:000425155400001en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

19
checked on Dec 14, 2024

WEB OF SCIENCETM
Citations

17
checked on Dec 20, 2024

Page view(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.