Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10848
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇelik, İbrahim-
dc.date.accessioned2019-08-16T13:33:24Z-
dc.date.available2019-08-16T13:33:24Z-
dc.date.issued2018-
dc.identifier.issn0307-904X-
dc.identifier.urihttps://hdl.handle.net/11499/10848-
dc.identifier.urihttps://doi.org/10.1016/j.apm.2017.09.041-
dc.description.abstractThis paper proposes operational matrix of rth integration of Chebyshev wavelets. A general procedure of this matrix is given. Operational matrix of rth integration is taken as rth power of operational matrix of first integration in literature. But, this study removes this disadvantage of Chebyshev wavelets method. Free vibration problems of non-uniform Euler–Bernoulli beam under various supporting conditions are investigated by using Chebyshev Wavelet Collocation Method. The proposed method is based on the approximation by the truncated Chebyshev wavelet series. A homogeneous system of linear algebraic equations has been obtained by using the Chebyshev collocation points. The determinant of coefficients matrix is equated to the zero for nontrivial solution of homogeneous system of linear algebraic equations. Hence, we can obtain ith natural frequencies of the beam and the coefficients of the approximate solution of Chebyshev wavelet series that satisfied differential equation and boundary conditions. Mode shapes functions corresponding to the natural frequencies can be obtained by normalizing of approximate solutions. The computed results well fit with the analytical and numerical results as in the literature. These calculations demonstrate that the accuracy of the Chebyshev wavelet collocation method is quite good even for small number of grid points. © 2017 Elsevier Inc.en_US
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofApplied Mathematical Modellingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChebyshev waveleten_US
dc.subjectCollocation methoden_US
dc.subjectFree vibrationen_US
dc.subjectNon-uniform beamen_US
dc.subjectAlgebraen_US
dc.subjectBoundary conditionsen_US
dc.subjectDifferential equationsen_US
dc.subjectIntegrationen_US
dc.subjectLinear algebraen_US
dc.subjectLinear equationsen_US
dc.subjectNatural frequenciesen_US
dc.subjectChebysheven_US
dc.subjectChebyshev wavelets methodsen_US
dc.subjectCoefficients matrixesen_US
dc.subjectFree vibration problemen_US
dc.subjectNonuniform beamen_US
dc.subjectWavelet collocation methoden_US
dc.subjectMatrix algebraen_US
dc.titleFree vibration of non-uniform Euler–Bernoulli beam under various supporting conditions using Chebyshev wavelet collocation methoden_US
dc.typeArticleen_US
dc.identifier.volume54en_US
dc.identifier.startpage268-
dc.identifier.startpage268en_US
dc.identifier.endpage280en_US
dc.identifier.doi10.1016/j.apm.2017.09.041-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85038207997en_US
dc.identifier.wosWOS:000423005000015en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

21
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

18
checked on Nov 21, 2024

Page view(s)

40
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.