Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10854
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhasemi, E.-
dc.contributor.authorKalhori, Hamid-
dc.contributor.authorBagherpour, R.-
dc.contributor.authorYagiz, S.-
dc.date.accessioned2019-08-16T13:33:27Z
dc.date.available2019-08-16T13:33:27Z
dc.date.issued2018-
dc.identifier.issn1435-9529-
dc.identifier.urihttps://hdl.handle.net/11499/10854-
dc.identifier.urihttps://doi.org/10.1007/s10064-016-0931-1-
dc.description.abstractThe uniaxial compressive strength (UCS) and Young’s modulus (E) of rock are important parameters for evaluating the strength, deformation, and stability of rock engineering structures. Direct measurement of these parameters is expensive, time-consuming, and even infeasible in some circumstances due to the difficulty involved in obtaining core samples. Recently, soft computing tools have been used to predict UCS and E based on index tests. Most of these tools are not as transparent and easy to use as empirical regression-based models. This study presents another soft computing approach—model trees—for predicting the UCS and E of carbonate rocks. The main advantages of model trees are that they are easier to use than other data learning tools and, more importantly, they represent understandable mathematical rules. In this study, the M5P algorithm was employed to build and evaluate model trees (UCS and E model trees). First, the models were developed in an unpruned form, and then they were pruned to avoid overfitting. The data used to train and test the model trees were collected from quarries in southwestern Turkey. Model trees included Schmidt hammer, effective porosity, dry unit weight, P-wave velocity, and slake durability index as input variables. When the models were assessed using a number of statistical indices (RMSE, MAE, VAF, and R2), it was found that unpruned and pruned model trees provide acceptable predictions of UCS and E, although the pruned models are simpler and easier to understand. © 2016, Springer-Verlag Berlin Heidelberg.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofBulletin of Engineering Geology and the Environmenten_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCarbonate rocksen_US
dc.subjectIndex testsen_US
dc.subjectM5P algorithmen_US
dc.subjectModel treeen_US
dc.subjectUniaxial compressive strengthen_US
dc.subjectYoung’s modulusen_US
dc.subjectCarbonatesen_US
dc.subjectCarbonationen_US
dc.subjectCompressive strengthen_US
dc.subjectForecastingen_US
dc.subjectForestryen_US
dc.subjectRocksen_US
dc.subjectSedimentary rocksen_US
dc.subjectSoft computingen_US
dc.subjectWave propagationen_US
dc.subjectCarbonate rocken_US
dc.subjectModel treesen_US
dc.subjectRegression-based modelen_US
dc.subjectSlake durability indicesen_US
dc.subjectSoft computing approachesen_US
dc.subjectSoft computing toolsen_US
dc.subjectTrees (mathematics)en_US
dc.subjectalgorithmen_US
dc.subjectcarbonate rocken_US
dc.subjectcompressive strengthen_US
dc.subjectmodelen_US
dc.subjectpredictionen_US
dc.subjectYoung modulusen_US
dc.subjectTurkeyen_US
dc.titleModel tree approach for predicting uniaxial compressive strength and Young’s modulus of carbonate rocksen_US
dc.typeArticleen_US
dc.identifier.volume77en_US
dc.identifier.issue1en_US
dc.identifier.startpage331
dc.identifier.startpage331en_US
dc.identifier.endpage343en_US
dc.identifier.doi10.1007/s10064-016-0931-1-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84983438099en_US
dc.identifier.wosWOS:000424335400022en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

73
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

68
checked on Nov 21, 2024

Page view(s)

38
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.