Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10919
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGürel, Eşref-
dc.contributor.authorAsci, M.-
dc.date.accessioned2019-08-16T13:33:53Z-
dc.date.available2019-08-16T13:33:53Z-
dc.date.issued2018-
dc.identifier.issn0381-7032-
dc.identifier.urihttps://hdl.handle.net/11499/10919-
dc.description.abstractIn this paper we define and study the bivariate Gaussian Fibonacci and Gaussian Lucas p-polynomials involving soinc interesting results and matrix representations. We give generating functions, combinatorial interpretations, and sum formulas. © 2018 Charles Babbage Research Centre. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherCharles Babbage Research Centreen_US
dc.relation.ispartofArs Combinatoriaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBivariate Gaussian fibonacci p-polynomialsen_US
dc.subjectFibonacci numbersen_US
dc.subjectFibonacci p-numbersen_US
dc.subjectGaussian fibonacci numbersen_US
dc.subjectGaussian fibonacci p-numbersen_US
dc.subjectGaussian lucas p-numbersen_US
dc.titleSome properties of bivariate Gaussian fibonacci and lucas P-Polynomialsen_US
dc.typeArticleen_US
dc.identifier.volume137en_US
dc.identifier.startpage123en_US
dc.identifier.endpage139en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85046796858en_US
dc.identifier.wosWOS:000426140100008en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

32
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.