Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/18223
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖzturk, Harun Kemal-
dc.contributor.authorCeylan, H-
dc.contributor.authorCanyurt, Olcay Ersel-
dc.contributor.authorHepbasli, A-
dc.date.accessioned2019-08-19T12:23:42Z-
dc.date.available2019-08-19T12:23:42Z-
dc.date.issued2005-
dc.identifier.issn0360-5442-
dc.identifier.urihttps://hdl.handle.net/11499/18223-
dc.identifier.urihttps://doi.org/10.1016/j.energy.2004.08.008-
dc.description.abstractThis paper describes the use of stochastic search processes that are the basis of genetic algorithms (GAs), in developing Turkey's electric energy estimation. The industrial sector electricity consumptions and the totals are estimated, based on the basic indicators of the gross national product, population, import and export figures. Two different non-linear estimation models are developed using GA. Developed models are validated with actual data, while future estimation of electricity demand is projected between 2002 and 2025. It may be concluded that the both GAs can possibly be applied to estimate electric energy consumption. (C) 2004 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.ispartofENERGYen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleElectricity estimation using genetic algorithm approach: a case study of Turkeyen_US
dc.typeArticleen_US
dc.identifier.volume30en_US
dc.identifier.issue7en_US
dc.identifier.startpage1003-
dc.identifier.startpage1003en_US
dc.identifier.endpage1012en_US
dc.identifier.doi10.1016/j.energy.2004.08.008-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-7544234827en_US
dc.identifier.wosWOS:000226295900005en_US
local.message.claim2023-07-12T13:22:15.972+0300|||rp00390|||submit_approve|||dc_contributor_author|||None*
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.dept10.07. Mechanical Engineering-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

146
checked on Dec 14, 2024

WEB OF SCIENCETM
Citations

115
checked on Dec 19, 2024

Page view(s)

58
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.