Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/2224
Title: | Mutlak nörlund uzayı ve matris operatörleri | Other Titles: | Absolute nörlund spaces and matrix operators | Authors: | Hazar Güleç, Güllü Canan | Advisors: | Mehmet Ali Sarıgöl | Keywords: | Mutlak Nörlund Toplanabilme Metodu Mutlak Cesàro Toplanabilme Metodu Matris Operatörleri BK-Uzayı Hausdorff Kompaktsızlık Ölçüsü Kompakt Operatörler Absolute Nörlund Summability Absolute Cesàro Summability Matrix Operators BK-Spaces Measure of Hausdorff Noncompactness Compact Operators |
Publisher: | Pamukkale Üniversitesi Fen Bilimleri Enstitüsü | Abstract: | Bu çalışma giriş bölümüyle birlikte beş ana bölümden oluşmaktadır. İkinci bölümde daha sonraki bölümlerde kullanacağımız temel tanım ve teoremlerin ifadeleri verilmiştir. Üçüncü bölümde Sarıgöl’ün (2010) tanımından özel durumda Nörlund matrisiyle elde edilen mutlak Nörlund toplanabilme metodu ile toplanabilen serilerin uzayı tanımlanarak bu uzayın bazı topolojik yapısı, kapsama ilişkileri incelenmiş ve dualleri ile Schauder bazı belirlenmiştir. Dördüncü bölümde uzayı ile ilgili matris operatörleri karakterize edilerek bu operatörlerin normları ve Hausdorff kompaktsızlık ölçüleri belirlenmiş ve aynı zamanda Hausdorff kompaktsızlık ölçüsü kullanılarak bu operatörlerin kompakt olması için gerek ve yeter şartlar verilmiştir. Böylece bilinen bazı önemli sonuçlar genelleştirilmiştir. Beşinci bölümde ise Cesàro ortalamasının içermediği ve Thorpe (1986) tarafından ayrıca tanımlanan ortalaması göz önüne alınarak uzayı tanımlanmış ve topolojik yapısı incelendikten sonra bu uzayla ilgili matris operatörleri karakterize edilmiştir. Böylece aynı zamanda Sarıgöl’ün (2016) bazı sonuçları da aralığına genişletilmiştir. study consists of five main chapters with the introduction part. In chapter 2, the basic definitions and theorems used in the following sections are given. In chapter 3, by defining the space as the set of all series summable by the absolute Nörlund summability method obtained by the definition of Sarıgöl (2010) with the special case of the Nörlund matrix, its some topological structures and inclusion relations are studied and also duals and the Schauder base are determined. In chapter 4, by characterizing some matrix operators defined on the space , their norms and Hausdorff measure of noncompactness are determined. Also, by applying the Hausdorff measure of noncompactness, the necessary and sufficient conditions for such operators to be compact are given. Therefore some known important results are generalized. In chapter 5, taking into account the mean (C,-1), not included by the general Cesàro mean and introduced by Thorpe (1986) separately, the space is defined and after investigating topological structure, duals and the Schauder base are obtained, and matrix operators related to this space are charaterized. Thus, also, some results of Sarıgöl (2016) are extended to the range. |
Description: | Bu tez çalışması Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2014FBE061 nolu proje ile desteklenmiştir. | URI: | https://hdl.handle.net/11499/2224 |
Appears in Collections: | Tez Koleksiyonu |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Güllü Canan Hazar Güleç.pdf | 2.33 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
62
checked on Aug 24, 2024
Download(s)
60
checked on Aug 24, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.