Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/23582
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇetin, Meriç-
dc.contributor.authorBeyhan, Selami-
dc.contributor.authorBahtiyar, Bedri-
dc.date.accessioned2019-08-20T06:53:44Z
dc.date.available2019-08-20T06:53:44Z
dc.date.issued2016-
dc.identifier.issn1300-7009-
dc.identifier.urihttps://hdl.handle.net/11499/23582-
dc.identifier.urihttps://doi.org/10.5505/pajes.2016.50475-
dc.description.abstractThe effect of the unmodeled dynamics and unknown disturbances prevent the accurate control of the real-time systems. The designed controllers must undertake the effect of these undesired uncertainties. In this paper, adaptive uncertainty modeling based model predictive controller is proposed for the control of uncertain linear systems. The uncertainty modeling structure uses an artificial neural network with adaptive learning rate for fast approximation. The stability of the proposed adaptive uncertainty modeling based model predictive control (UMPC) is shown using Lyapunov candidate function. Conventional MPC and proposed UMPC are applied to the control of a real-time DC/DC buck power converter. The conventional MPC cannot accurately control the DC/DC converter due to the unknown parameters and unmodeled dynamics. However, the proposed UMPC controller can accurately control the system with modeling the uncertainties in controller dynamics. The proposed controller is promising to control uncertain systems in future applications.en_US
dc.language.isotren_US
dc.publisherPAMUKKALE UNIVen_US
dc.relation.ispartofPAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectModel predictive control; Adaptive linear model predictive control;en_US
dc.subjectAdaptive neural networks; Stability; Real-time DC/DC converteren_US
dc.titleArtificial neural network based adaptive linear model predictive controlen_US
dc.title.alternativeYapay sinir ağı temelli uyarlamalı doğrusal model-öngörülü kontrolen_US
dc.typeArticleen_US
dc.identifier.volume22en_US
dc.identifier.issue8en_US
dc.identifier.startpage650
dc.identifier.startpage650en_US
dc.identifier.endpage658en_US
dc.authorid0000-0002-8679-095X-
dc.identifier.doi10.5505/pajes.2016.50475-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosWOS:000443166500004en_US
dc.ownerPamukkale University-
item.fulltextWith Fulltext-
item.languageiso639-1tr-
item.grantfulltextopen-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept10.10. Computer Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Denizli Teknik Bilimler Meslek Yüksekokulu Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
PAJES_22_8_650_658.pdf1.1 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.