Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/23974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalaycı, Can Berk-
dc.contributor.authorErtenlice, Ökkeş-
dc.contributor.authorAkyer, Hasan-
dc.contributor.authorAygören, Hakan-
dc.date.accessioned2019-08-20T06:56:43Z
dc.date.available2019-08-20T06:56:43Z
dc.date.issued2017-
dc.identifier.issn1300-7009-
dc.identifier.urihttps://hdl.handle.net/11499/23974-
dc.identifier.urihttps://doi.org/10.5505/pajes.2017.37132-
dc.description.abstractMean-variance portfolio optimization model, introduced by Markowitz, provides a fundamental answer to the problem of portfolio management. This model seeks an efficient frontier with the best trade-offs between two conflicting objectives of maximizing return and minimizing risk. The problem of determining an efficient frontier is known to be NP-hard. Due to the complexity of the problem, genetic algorithms have been widely employed by a growing number of researchers to solve this problem. In this study, a literature review of genetic algorithms implementations on mean-variance portfolio optimization is examined from the recent published literature. Main specifications of the problems studied and the specifications of suggested genetic algorithms have been summarized.en_US
dc.language.isoenen_US
dc.publisherPAMUKKALE UNIVen_US
dc.relation.ispartofPAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPortfolio management and optimization; Mean-variance model; Evolutionaryen_US
dc.subjectalgorithms; Genetic algorithmen_US
dc.titleA review on the current applications of genetic algorithms in mean-variance portfolio optimizationen_US
dc.title.alternativeOrtalama-varyans portföy optimizasyonunda genetik algoritma uygulamaları üzerine bir literatür araştırmasıen_US
dc.typeReviewen_US
dc.identifier.volume23en_US
dc.identifier.issue4en_US
dc.identifier.startpage470
dc.identifier.startpage470en_US
dc.identifier.endpage476en_US
dc.identifier.doi10.5505/pajes.2017.37132-
dc.relation.publicationcategoryDiğeren_US
dc.identifier.wosWOS:000443177400022en_US
dc.ownerPamukkale University-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeReview-
item.grantfulltextopen-
crisitem.author.dept10.09. Industrial Engineering-
crisitem.author.dept10.09. Industrial Engineering-
crisitem.author.dept08.04. Business Administration-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
A review on the current applications of genetic algorithms in.pdf846.65 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

10
checked on Nov 21, 2024

Page view(s)

512
checked on Aug 24, 2024

Download(s)

332
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.