Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/24339
Title: | Mineralogical Evidences on Argillic Alteration in the Copler Porphyry-Epithermal Gold Deposit (Erzincan, East-Central Anatolia) | Other Titles: | Çöpler (Erzincan, İç-Doğu Anadolu) Porfiri-Epitermal Altın Yatağında Arjilik Alterasyona İlişkin Mineralojik Kanıtlar | Authors: | Bozkaya, Ömer Bozkaya, G Hanilci, N Guven, AS Banks, DA Uysal, IT |
Keywords: | Alteration; Central-east Anatolia; Porphyry gold deposit; Mineralogy; Petrography |
Publisher: | TMMOB JEOLOJI MUHENDISLERI ODASI | Abstract: | The Copler porphyry-epithermal gold deposit is associated with middle Eocene intrusive rocks related to an extensional tectonic phase in the Tethyan Alpine-Himalayan orogenic belt. The intrusive rocks (granodiorite porphyry and diorite porphyry) were emplaced into Late Paleozoic-Mesozoic metapelite and metacarbonate rocks creating the porphyry-epithermal Cu-Au deposit and hydrothermal alteration zones (potassic, phyllic, propylitic, argillic). The mineralogic-petrographic and geochemical properties of the extensive argillic alteration zones (not supergene alteration described previously) were determined by optical and scanning electron microscopy (SEM and SEM-EDS), X-ray diffraction (XRD), O-H isotope geochemistry and K-Ar dating. Within the primary porphyritic texture, fine-grained clay and quartz crystals are present as homogeneous and partly micro-laminations in the more intensely argillized granodiorite porphyry. Smectite and mixed-layer illite-smectite (I-S) minerals exhibit flaky/ sponge-like and fibrous shapes, respectively, whereas illites and kaolinites show platy/tabular crystal shapes. Quartz and jarosite have euhedral crystals, cristobalites and crandallites (first determined here) are shown as worm-like and fine-grained granular aggregates, respectively, developed within the pores indicating direct precipitation from the hydrothermal fluids. The samples from the argillic zone display quartz + I-S in the inner parts (advanced argillic zone) close to phyllic zone, whereas quartz + smectite + kaolinite associations are towards outer parts (argillic zone). Smectites have a dioctahedral composition (d 060 < 1.500 A, octahedral Al= 1.47-1.66 a. p. f. u). I-S minerals have a high illite component (I 85 -S 15) with R3 type ordering of interlayering. The tetrahedral Al and interlayer K contents are 1.66-1.71 and 0.58-0.75, respectively. Oxygen and hydrogen isotope composition of I-S indicate the low temperature conditions from the magmatic water dominant fluids. K/Ar age data from jarosite-bearing sample (43.6 +/- 1.0 My) indicates that the argillic alteration started during or shortly after (< 1 Ma) the plutonic intrusion. The data demonstrate the argillic alteration was widely distributed and developed under low temperature (< 200 C-o), acidic conditions in association with the aluminum phosphate and iron phosphate minerals. | URI: | https://hdl.handle.net/11499/24339 https://doi.org/10.25288/tjb.468148 |
ISSN: | 1016-9164 |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
a1436155-1864-4644-8be4-013f7b380801.pdf | 2.85 MB | Adobe PDF | View/Open |
CORE Recommender
WEB OF SCIENCETM
Citations
1
checked on Oct 22, 2024
Page view(s)
100
checked on Aug 24, 2024
Download(s)
60
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.