Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/24685
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDemir, Leyla-
dc.contributor.authorAkkaş, Selahattin-
dc.date.accessioned2019-08-20T07:13:53Z-
dc.date.available2019-08-20T07:13:53Z-
dc.date.issued2018-
dc.identifier.issn1300-7009-
dc.identifier.urihttps://hdl.handle.net/11499/24685-
dc.identifier.urihttps://doi.org/10.5505/pajes.2018.58235-
dc.description.abstractDue to global warming in recent years, using natural resources in an effective way has become more and more important to our world. Decreasing natural resources are pushing agriculture and food chains to adopt more efficient management strategies. The first condition for a successful management is to make plans based on accurate and reliable forecasts. In this study, using real-world data, forecasting models are compared for the products of a feed company which is the first chain of agriculture and food chain systems. The traditional statistical time series methods are compared to two popular and effective computational intelligence techniques, i.e. artificial neural networks and support vector regression. The accuracy of the forecasts is calculated by three different error measures, i.e., the mean absolute error (MAE), the mean absolute percentage error (MAPE), and the mean squared error (MSE). The results show that support vector machines produces significantly better results comparing to both time series methods and artificial neural networks.en_US
dc.language.isoenen_US
dc.publisherPAMUKKALE UNIVen_US
dc.relation.ispartofPAMUKKALE UNIVERSITY JOURNAL OF ENGINEERING SCIENCES-PAMUKKALEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSales forecasting; Time series methods; Artificial neural networks;en_US
dc.subjectSupport vector regression; Agriculture and food chains; Feed industryen_US
dc.titleA comparison of sales forecasting methods for a feed company: A case studyen_US
dc.typeArticleen_US
dc.identifier.volume24en_US
dc.identifier.issuePPLY-CHAIN; SYSTEM; COMBINATIONS; INTEGRATIONen_US
dc.identifier.issue4en_US
dc.identifier.startpage705-
dc.identifier.startpage705en_US
dc.identifier.endpage712en_US
dc.authorid0000-0001-8121-9300-
dc.identifier.doi10.5505/pajes.2018.58235-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid306618en_US
dc.identifier.wosWOS:000441810300018en_US
dc.ownerPamukkale University-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.09. Industrial Engineering-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
A comparison of sales forecasting methods for a feed company.pdf1.21 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Nov 15, 2024

Page view(s)

50
checked on Aug 24, 2024

Download(s)

224
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.