Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/25757
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHatipoğlu, Fatma Busem-
dc.contributor.authorUyar, Umut-
dc.date.accessioned2019-09-04T11:59:22Z
dc.date.available2019-09-04T11:59:22Z
dc.date.issued2019-
dc.identifier.issn2619-9491-
dc.identifier.urihttps://hdl.handle.net/11499/25757-
dc.identifier.urihttps://doi.org/10.20409/berj.2019.202-
dc.description.abstractAccording to the modern portfolio theory, the direction of the relationship between the securities in the portfolio is stated to be effective in reducing the risk. Moreover, securities in high correlation are avoided by taking place in the same portfolio. The models structured by the Bayesian networks are capable of visually illustrate the probabilistic relationship. Also, portfolio returns could be refreshed simultaneously when new information has arrived. The study aims to provide dynamic information through Bayesian networks and to investigate the relationship between macroeconomic indicators and stock returns of Turkish major bank stocks based on the Arbitrage Pricing Model. The dataset includes stock returns of four banks listed in the Borsa Istanbul from June 2001 to January 2017. Besides, macroeconomic variables such as BIST-100 Index, oil prices, inflation, exchange, and interest rate & money supply are gathered for the same period. The results suggest that the Bayesian network models allow dynamics among stock returns could be investigated in more detail. Additionally, it determines that macroeconomic variables would have various impacts on stock returns on bank stocks by comparison of the conventional methods.en_US
dc.language.isoenen_US
dc.publisherBusiness and Economics Research Journalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArbitrage Pricing Modelen_US
dc.subjectBayesian Networksen_US
dc.subjectMachine Learningen_US
dc.subjectPortfolio Selection Theoryen_US
dc.subjectBanking Stocksen_US
dc.titleExamining the dynamics of macroeconomic indicators and banking stock returns with bayesian networksen_US
dc.typeArticleen_US
dc.identifier.volume10en_US
dc.identifier.issue4en_US
dc.identifier.startpage807en_US
dc.identifier.endpage822en_US
dc.authorid0000-0001-6217-8283-
dc.authorid0000-0001-5913-5290-
dc.identifier.doi10.20409/berj.2019.202-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid319111en_US
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
crisitem.author.dept08.04. Business Administration-
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
BERJ10419Article4p.807-822.pdf1.31 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

54
checked on Aug 24, 2024

Download(s)

28
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.