Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/26312
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yaslan, İsmail | - |
dc.date.accessioned | 2019-09-26T16:35:57Z | |
dc.date.available | 2019-09-26T16:35:57Z | |
dc.date.issued | 2004 | - |
dc.identifier.issn | 1311-1728 | - |
dc.identifier.uri | https://hdl.handle.net/11499/26312 | - |
dc.description.abstract | In this paper, we consider boundary value problems for nonlinear differential equations in the Hilbert space L2 (0;infinity) and L2 (-infinity;infinity) . Using the Schauder fixed point theorem, the existence results for solutions of the considered boundary value problems are established. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Academic Publications | en_US |
dc.relation.ispartof | International Journal of Applied Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Boundary value problems | en_US |
dc.subject | compact operator | en_US |
dc.subject | infinite interval | en_US |
dc.subject | Schauder fixed point theorem | en_US |
dc.subject | Weyl limit circle case | en_US |
dc.title | Existence results for solutions of boundary value problems on infinite intervals | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 15 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 371 | en_US |
dc.identifier.endpage | 379 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopusquality | Q3 | - |
dc.owner | Pamukkale_University | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 17.04. Mathematics | - |
Appears in Collections: | Fen-Edebiyat Fakültesi Koleksiyonu |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.