Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/30017
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kavaklıoğlu, Kadir | - |
dc.date.accessioned | 2020-06-08T12:10:56Z | |
dc.date.available | 2020-06-08T12:10:56Z | |
dc.date.issued | 2019 | - |
dc.identifier.issn | 1868-3967 | - |
dc.identifier.uri | https://hdl.handle.net/11499/30017 | - |
dc.identifier.uri | https://doi.org/10.1007/s12667-018-0302-z | - |
dc.description.abstract | A first order vector autoregression topology was used to model and predict Turkey’s net electricity consumption in the future. Input variables for the model were the annual values of electricity consumption along with four demographic and economic indicators such as, population, gross domestic product, imports and exports. Output variables were the one-step-ahead values of the same variables. First, polynomial regressions were used to determine and remove the trend components of all these five variables. Then, principal components regression method was applied to evaluate the coefficients of the vector autoregression model. Electricity consumption of Turkey was modeled using annual data from 1970 to 2016 and the model was used to predict future consumption values until year 2030. Singular value decomposition was used to determine the number of important dimensions in the data. This approach yielded a significant reduction in the dimensionality of the problem and thus provided robustness to the predictions. The results showed the feasibility of applying principal components regression method to vector autoregression model for electricity consumption prediction. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Electricity consumption | en_US |
dc.subject | Principal components regression | en_US |
dc.subject | Turkey | en_US |
dc.subject | Vector autoregression | en_US |
dc.subject | Electric power utilization | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Singular value decomposition | en_US |
dc.subject | Topology | en_US |
dc.subject | Vectors | en_US |
dc.subject | Economic indicators | en_US |
dc.subject | Electricity-consumption | en_US |
dc.subject | Gross domestic products | en_US |
dc.subject | Polynomial regression | en_US |
dc.subject | Principal Components | en_US |
dc.subject | Vector autoregression models | en_US |
dc.subject | Vector autoregressions | en_US |
dc.subject | Regression analysis | en_US |
dc.title | Principal components based robust vector autoregression prediction of Turkey’s electricity consumption | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 10 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 889 | |
dc.identifier.startpage | 889 | en_US |
dc.identifier.endpage | 910 | en_US |
dc.authorid | 0000-0002-9050-9219 | - |
dc.identifier.doi | 10.1007/s12667-018-0302-z | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85073211243 | en_US |
dc.identifier.wos | WOS:000504103600003 | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.owner | Pamukkale University | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 10.07. Mechanical Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
10
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
9
checked on Nov 21, 2024
Page view(s)
50
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.