Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/30017
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKavaklıoğlu, Kadir-
dc.date.accessioned2020-06-08T12:10:56Z
dc.date.available2020-06-08T12:10:56Z
dc.date.issued2019-
dc.identifier.issn1868-3967-
dc.identifier.urihttps://hdl.handle.net/11499/30017-
dc.identifier.urihttps://doi.org/10.1007/s12667-018-0302-z-
dc.description.abstractA first order vector autoregression topology was used to model and predict Turkey’s net electricity consumption in the future. Input variables for the model were the annual values of electricity consumption along with four demographic and economic indicators such as, population, gross domestic product, imports and exports. Output variables were the one-step-ahead values of the same variables. First, polynomial regressions were used to determine and remove the trend components of all these five variables. Then, principal components regression method was applied to evaluate the coefficients of the vector autoregression model. Electricity consumption of Turkey was modeled using annual data from 1970 to 2016 and the model was used to predict future consumption values until year 2030. Singular value decomposition was used to determine the number of important dimensions in the data. This approach yielded a significant reduction in the dimensionality of the problem and thus provided robustness to the predictions. The results showed the feasibility of applying principal components regression method to vector autoregression model for electricity consumption prediction. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectricity consumptionen_US
dc.subjectPrincipal components regressionen_US
dc.subjectTurkeyen_US
dc.subjectVector autoregressionen_US
dc.subjectElectric power utilizationen_US
dc.subjectForecastingen_US
dc.subjectSingular value decompositionen_US
dc.subjectTopologyen_US
dc.subjectVectorsen_US
dc.subjectEconomic indicatorsen_US
dc.subjectElectricity-consumptionen_US
dc.subjectGross domestic productsen_US
dc.subjectPolynomial regressionen_US
dc.subjectPrincipal Componentsen_US
dc.subjectVector autoregression modelsen_US
dc.subjectVector autoregressionsen_US
dc.subjectRegression analysisen_US
dc.titlePrincipal components based robust vector autoregression prediction of Turkey’s electricity consumptionen_US
dc.typeArticleen_US
dc.identifier.volume10en_US
dc.identifier.issue4en_US
dc.identifier.startpage889
dc.identifier.startpage889en_US
dc.identifier.endpage910en_US
dc.authorid0000-0002-9050-9219-
dc.identifier.doi10.1007/s12667-018-0302-z-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85073211243en_US
dc.identifier.wosWOS:000504103600003en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 21, 2024

Page view(s)

50
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.