Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/30099
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Banks, D.A. | - |
dc.contributor.author | Bozkaya, Gülcan | - |
dc.contributor.author | Bozkaya, Ömer | - |
dc.date.accessioned | 2020-06-08T12:11:12Z | |
dc.date.available | 2020-06-08T12:11:12Z | |
dc.date.issued | 2019 | - |
dc.identifier.issn | 0169-1368 | - |
dc.identifier.uri | https://hdl.handle.net/11499/30099 | - |
dc.identifier.uri | https://doi.org/10.1016/j.oregeorev.2019.102955 | - |
dc.description.abstract | Colloidal gold particles have been observed in c. 300 °C low salinity fluids from the Arapucandere intermediate sulphidation epithermal base-metal-Au deposit in NW Turkey. This is the first time colloidal gold has been recorded in an ancient mineralizing fluid. Growth, in veins, of large euhedral quartz crystals, after the deposition of sulphides, occurred in a number of stages from the introduction of fresh pulses of fluid. The quartz overgrowths have a fibrous texture which facilitated trapping of large elongate fluid inclusions between the quartz fibres which grew perpendicular to the crystal faces of the pre-existing quartz. Episodic periods of intense trapping of fluid inclusions occurred throughout the growth of quartz. Trapped within primary fluid inclusions are numerous particles of gold, the largest observed is c. 1 µm but most are smaller. BSE element mapping shows these to contain Au, Ag, Cu ± Hg. LA-ICP-MS profiles of the fluid inclusions confirm Au and Ag is not present in solution, being present as numerous particles. We have quantified the concentration of gold in fluid inclusions which are orders of magnitude greater than has been previously measured or thought likely in crustal fluids. The average Ag concentration is c. 32 ppm and Au is c. 41 ppm but the maximum concentrations of both may reach several 100’s to 1000 ppm. Calcite forms a coating on the inner surface of the inclusions and barite, pyrite, galena, sphalerite and unidentified minerals are also present with the Au-Ag particles. It is clear that the Au-Ag particles could not have precipitated in the fluid inclusions, therefore they must have precipitated elsewhere and been carried with the hydrothermal fluid. The high concentrations and their colloidal nature have implications for the enrichment of gold in mineral deposits. © 2019 Elsevier B.V. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Colloidal gold | en_US |
dc.subject | Epithermal | en_US |
dc.subject | Fluid inclusions | en_US |
dc.subject | LA-ICP-MS | en_US |
dc.subject | Turkey | en_US |
dc.subject | Binary alloys | en_US |
dc.subject | Calcite | en_US |
dc.subject | Deposits | en_US |
dc.subject | Economic geology | en_US |
dc.subject | Gold nanoparticles | en_US |
dc.subject | Inductively coupled plasma mass spectrometry | en_US |
dc.subject | Mass spectrometers | en_US |
dc.subject | Mineralogy | en_US |
dc.subject | Pyrites | en_US |
dc.subject | Quartz | en_US |
dc.subject | Silver | en_US |
dc.subject | Silver alloys | en_US |
dc.subject | Sols | en_US |
dc.subject | Sulfur compounds | en_US |
dc.subject | Textures | en_US |
dc.subject | Zinc sulfide | en_US |
dc.subject | Fluid inclusion | en_US |
dc.subject | La-ICP-MS | en_US |
dc.subject | Gold deposits | en_US |
dc.subject | colloid | en_US |
dc.subject | concentration (composition) | en_US |
dc.subject | epithermal deposit | en_US |
dc.subject | fluid inclusion | en_US |
dc.subject | gold | en_US |
dc.subject | mass spectrometry | en_US |
dc.subject | mineralization | en_US |
dc.subject | ore deposit | en_US |
dc.subject | silver | en_US |
dc.title | Direct observation and measurement of Au and Ag in epithermal mineralizing fluids | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 111 | en_US |
dc.authorid | 0000-0002-8474-8600 | - |
dc.authorid | 0000-0002-7336-0707 | - |
dc.identifier.doi | 10.1016/j.oregeorev.2019.102955 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85066937243 | en_US |
dc.identifier.wos | WOS:000484869200052 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
crisitem.author.dept | 10.08. Geological Engineering | - |
crisitem.author.dept | 10.08. Geological Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
1-s2.0-S0169136818307546-main.pdf | 2.37 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
16
checked on Oct 13, 2024
WEB OF SCIENCETM
Citations
15
checked on Nov 21, 2024
Page view(s)
54
checked on Aug 24, 2024
Download(s)
16
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.