Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/30255
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çetin, Meriç | - |
dc.contributor.author | Bahtiyar, Bedri | - |
dc.contributor.author | Beyhan, Selami | - |
dc.date.accessioned | 2020-06-08T12:12:02Z | |
dc.date.available | 2020-06-08T12:12:02Z | |
dc.date.issued | 2019 | - |
dc.identifier.issn | 0941-0643 | - |
dc.identifier.uri | https://hdl.handle.net/11499/30255 | - |
dc.identifier.uri | https://doi.org/10.1007/s00521-017-3068-7 | - |
dc.description.abstract | In this paper, an adaptive model predictive controller (MPC) with a function approximator is proposed to the control of the uncertain nonlinear systems. The proposed adaptive Sigmoid and Chebyshev neural networks-based MPCs (ANN-MPC and ACN-MPC) compensate the system uncertainty and control the system accurately. Using Lyapunov theory, the closed-loop signals of the linearized dynamics and the uncertainty modeling-based model predictive controller have been proved to be bounded. Accuracy of the ANN-MPC and ACN-MPC has been compared with the Runge–Kutta discretization-based nonlinear MPC on an experimental MIMO three-tank liquid-level system where a functional uncertainty is created on its dynamics. Real-time experimental results demonstrate the effectiveness of the proposed controllers. In addition, due to the faster function approximation capability of Chebyshev polynomial networks, ACN-MPC provided better control performance results. © 2017, The Natural Computing Applications Forum. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer London | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Adaptive neural network | en_US |
dc.subject | Chebyshev polynomial network | en_US |
dc.subject | Model predictive control | en_US |
dc.subject | Real-time control | en_US |
dc.subject | Stability | en_US |
dc.subject | Three-tank liquid-level system | en_US |
dc.subject | Uncertainty compensation | en_US |
dc.subject | Controllers | en_US |
dc.subject | Convergence of numerical methods | en_US |
dc.subject | Nonlinear systems | en_US |
dc.subject | Polynomial approximation | en_US |
dc.subject | Predictive control systems | en_US |
dc.subject | Real time control | en_US |
dc.subject | Tanks (containers) | en_US |
dc.subject | Uncertainty analysis | en_US |
dc.subject | Adaptive model predictive controllers | en_US |
dc.subject | Adaptive neural networks | en_US |
dc.subject | Chebyshev neural networks | en_US |
dc.subject | Chebyshev polynomials | en_US |
dc.subject | Model predictive controllers | en_US |
dc.subject | Nonlinear model predictive control | en_US |
dc.subject | Three-tank liquid level systems | en_US |
dc.subject | Uncertain nonlinear systems | en_US |
dc.subject | Adaptive control systems | en_US |
dc.title | Adaptive uncertainty compensation-based nonlinear model predictive control with real-time applications | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 31 | en_US |
dc.identifier.startpage | 1029 | |
dc.identifier.startpage | 1029 | en_US |
dc.identifier.endpage | 1043 | en_US |
dc.authorid | 0000-0002-8679-095X | - |
dc.identifier.doi | 10.1007/s00521-017-3068-7 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85021083740 | en_US |
dc.identifier.wos | WOS:000464766200028 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en | - |
crisitem.author.dept | 10.10. Computer Engineering | - |
crisitem.author.dept | 10.04. Electrical-Electronics Engineering | - |
crisitem.author.dept | 10.04. Electrical-Electronics Engineering | - |
Appears in Collections: | Denizli Teknik Bilimler Meslek Yüksekokulu Koleksiyonu Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
17
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
16
checked on Nov 21, 2024
Page view(s)
72
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.