Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/30255
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇetin, Meriç-
dc.contributor.authorBahtiyar, Bedri-
dc.contributor.authorBeyhan, Selami-
dc.date.accessioned2020-06-08T12:12:02Z
dc.date.available2020-06-08T12:12:02Z
dc.date.issued2019-
dc.identifier.issn0941-0643-
dc.identifier.urihttps://hdl.handle.net/11499/30255-
dc.identifier.urihttps://doi.org/10.1007/s00521-017-3068-7-
dc.description.abstractIn this paper, an adaptive model predictive controller (MPC) with a function approximator is proposed to the control of the uncertain nonlinear systems. The proposed adaptive Sigmoid and Chebyshev neural networks-based MPCs (ANN-MPC and ACN-MPC) compensate the system uncertainty and control the system accurately. Using Lyapunov theory, the closed-loop signals of the linearized dynamics and the uncertainty modeling-based model predictive controller have been proved to be bounded. Accuracy of the ANN-MPC and ACN-MPC has been compared with the Runge–Kutta discretization-based nonlinear MPC on an experimental MIMO three-tank liquid-level system where a functional uncertainty is created on its dynamics. Real-time experimental results demonstrate the effectiveness of the proposed controllers. In addition, due to the faster function approximation capability of Chebyshev polynomial networks, ACN-MPC provided better control performance results. © 2017, The Natural Computing Applications Forum.en_US
dc.language.isoenen_US
dc.publisherSpringer Londonen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive neural networken_US
dc.subjectChebyshev polynomial networken_US
dc.subjectModel predictive controlen_US
dc.subjectReal-time controlen_US
dc.subjectStabilityen_US
dc.subjectThree-tank liquid-level systemen_US
dc.subjectUncertainty compensationen_US
dc.subjectControllersen_US
dc.subjectConvergence of numerical methodsen_US
dc.subjectNonlinear systemsen_US
dc.subjectPolynomial approximationen_US
dc.subjectPredictive control systemsen_US
dc.subjectReal time controlen_US
dc.subjectTanks (containers)en_US
dc.subjectUncertainty analysisen_US
dc.subjectAdaptive model predictive controllersen_US
dc.subjectAdaptive neural networksen_US
dc.subjectChebyshev neural networksen_US
dc.subjectChebyshev polynomialsen_US
dc.subjectModel predictive controllersen_US
dc.subjectNonlinear model predictive controlen_US
dc.subjectThree-tank liquid level systemsen_US
dc.subjectUncertain nonlinear systemsen_US
dc.subjectAdaptive control systemsen_US
dc.titleAdaptive uncertainty compensation-based nonlinear model predictive control with real-time applicationsen_US
dc.typeArticleen_US
dc.identifier.volume31en_US
dc.identifier.startpage1029
dc.identifier.startpage1029en_US
dc.identifier.endpage1043en_US
dc.authorid0000-0002-8679-095X-
dc.identifier.doi10.1007/s00521-017-3068-7-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85021083740en_US
dc.identifier.wosWOS:000464766200028en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Denizli Teknik Bilimler Meslek Yüksekokulu Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

17
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

16
checked on Nov 21, 2024

Page view(s)

72
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.