Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/30264
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÇomak, Emre-
dc.date.accessioned2020-06-08T12:12:05Z
dc.date.available2020-06-08T12:12:05Z
dc.date.issued2019-
dc.identifier.issn0266-4720-
dc.identifier.urihttps://hdl.handle.net/11499/30264-
dc.identifier.urihttps://doi.org/10.1111/exsy.12330-
dc.description.abstractThis study introduces reverse direction supported particle swarm optimization (RDS-PSO) with an adaptive regulation procedure. It benefits from identifying the global worst and global best particles to increase the diversity of the PSO. The velocity update equation of the original PSO was changed according to this idea. To control the impacts of the global best and global worst particles on the velocity update equation, the alpha parameter was added to the velocity update equation. Moreover, a procedure for diversity regulation based on cosine amplitude or max–min methods was introduced. Alpha value was changed adaptively with respect to this diversity measure. Besides, RDS-PSO was implemented with both linearly increasing and decreasing inertia weight (with 1,000 and 2,000 iterations) in order to survey the effects of these variations on RDS-PSO performances. Six most commonly used benchmark functions and three medical classification problems were selected as experimental data sets. All experimental results showed that when the grain searching ability is not so small in the last generations, the algorithm performance continues to increase. Experimental proof of it was showed up especially in RDS-PSO using the cosine amplitude approach. Because the best results among all the RDS-PSO types for decreasing inertia weight modes were obtained with 2,000 maximal iterations rather than 1,000 ones. © 2018 John Wiley & Sons, Ltden_US
dc.language.isoenen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcosine amplitudeen_US
dc.subjectdiversity regulationen_US
dc.subjectmax–minen_US
dc.subjectparticle swarm optimizationen_US
dc.subjectClassification (of information)en_US
dc.subjectMedical problemsen_US
dc.subjectVelocityen_US
dc.subjectAdaptive diversityen_US
dc.subjectAdaptive regulationen_US
dc.subjectAlgorithm performanceen_US
dc.subjectBenchmark functionsen_US
dc.subjectMedical classificationen_US
dc.subjectVelocity update equationen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.titleA particle swarm optimizer with modified velocity update and adaptive diversity regulationen_US
dc.typeArticleen_US
dc.identifier.volume36en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1111/exsy.12330-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85052950122en_US
dc.identifier.wosWOS:000458908900011en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 21, 2024

Page view(s)

50
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.