Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/30359
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKayır, Hatice Hilal Ezercan-
dc.date.accessioned2020-06-08T12:12:44Z-
dc.date.available2020-06-08T12:12:44Z-
dc.date.issued2019-
dc.identifier.issn1392-1215-
dc.identifier.urihttps://hdl.handle.net/11499/30359-
dc.identifier.urihttps://doi.org/10.5755/j01.eie.25.2.23197-
dc.description.abstract—Task allocation is the essential part of multirobot coordination researches and it plays a significant role to achieve desired system performance. Uncertainties in multirobot systems’ working environment due to nature of them are the major hurdle for perfect coordination. When learning-based task allocation approaches are used, firstly robots learn about their working environment and then they benefit from their experiences in future task allocation process. These approaches provide useful solutions as long as environmental conditions remain unchanged. If permanent changes in environment characteristics or some failure in multi-robot system occur undesirably e.g. in disaster response which is a good example to represent such cases, the previously-learned information becomes invalid. At this point, the most important mission is to detect the failure and to recover the system initial learning state. For this purpose, Q-learning based failure detection and self-recovery algorithm is proposed in this study. According to this approach, multi-robot system checks whether these variations permanent, then recover the system to learning state if it is required. So, it provides dynamic task allocation procedure having great advantages against unforeseen situations. The experimental results verify that the proposed algorithm offer efficient solutions for multi-robot task allocation problem even in systemic failure cases. © 2019 Kauno Technologijos Universitetas. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherKauno Technologijos Universitetasen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAutonomous systemsen_US
dc.subjectIntelligent robotsen_US
dc.subjectMulti-robot systemsen_US
dc.subjectRobot learningen_US
dc.titleQ-learning based failure detection and self-recovery algorithm for multi-robot domainsen_US
dc.typeArticleen_US
dc.identifier.volume25en_US
dc.identifier.issue2en_US
dc.identifier.startpage9-
dc.identifier.startpage9en_US
dc.identifier.endpage13en_US
dc.authorid0000-0002-5456-3613-
dc.identifier.doi10.5755/j01.eie.25.2.23197-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85066311951en_US
dc.identifier.wosWOS:000466384200002en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Hatice Hilal Ezercan.pdf761.38 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

42
checked on Aug 24, 2024

Download(s)

16
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.