Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/30426
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİplikci, Serdar.-
dc.contributor.authorBilgi, B.-
dc.contributor.authorMenemen, A.-
dc.contributor.authorBahtiyar, Bedri.-
dc.date.accessioned2020-06-08T12:13:12Z-
dc.date.available2020-06-08T12:13:12Z-
dc.date.issued2019-
dc.identifier.isbn03029743 (ISSN)-
dc.identifier.isbn9783030304836-
dc.identifier.urihttps://hdl.handle.net/11499/30426-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-30484-3_17-
dc.description.abstractIn this work, a novel modification on the standard Levenberg-Marquardt (LM) algorithm is proposed for eliminating the necessity of the validation set for avoiding overfitting, thereby shortening the training time while maintaining the test performance. The idea is that training points with smaller magnitudes of training errors are much liable to cause overfitting and that they should be excluded from the training set at each epoch. The proposed modification has been compared to the standard LM on three different problems. The results shown that even though the modified LM does not use the validation data set, it reduces the training time without compromising the test performance. © 2019, Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLevenberg-Marquardt algorithmen_US
dc.subjectNeural networksen_US
dc.subjectOverfittingen_US
dc.subjectValidation data seten_US
dc.subjectDeep learningen_US
dc.subjectStatistical testsen_US
dc.subjectNeural network trainingen_US
dc.subjectTest performanceen_US
dc.subjectTraining errorsen_US
dc.subjectTraining pointsen_US
dc.subjectTraining setsen_US
dc.subjectValidation dataen_US
dc.titleA Novel Modification on the Levenberg-Marquardt Algorithm for Avoiding Overfitting in Neural Network Trainingen_US
dc.typeConference Objecten_US
dc.identifier.volume11728 LNCSen_US
dc.identifier.startpage201-
dc.identifier.startpage201en_US
dc.identifier.endpage207en_US
dc.authorid0000-0003-3806-1442-
dc.authorid0000-0002-8679-095X-
dc.identifier.doi10.1007/978-3-030-30484-3_17-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85072872600en_US
dc.identifier.wosWOS:000545998100017en_US
dc.ownerPamukkale University-
item.openairetypeConference Object-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept10.10. Computer Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Denizli Teknik Bilimler Meslek Yüksekokulu Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 24, 2024

Page view(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.