Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/37085
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKırkbaş, Ali-
dc.contributor.authorDemirçalı, Akif-
dc.contributor.authorKöroğlu, Selim-
dc.contributor.authorKızılkaya, Aydın-
dc.date.accessioned2021-02-02T09:23:55Z
dc.date.available2021-02-02T09:23:55Z
dc.date.issued2020-
dc.identifier.issn0378-7796-
dc.identifier.urihttps://hdl.handle.net/11499/37085-
dc.identifier.urihttps://doi.org/10.1016/j.epsr.2020.106346-
dc.description.abstractThis paper considers the problem of classifying power transformer faults in the incipient stage by using dissolved gas analysis (DGA) data. To solve this problem with high accuracy, we propose to use the common vector approach (CVA) that is a successful classifier when the number of data is insufficient. The feature vector required for the training and testing phases of the CVA is established by using both raw dissolved gas analysis data and some characteristics extracted from this data. The performance of the proposed method is evaluated over DGA data sets supplied from the Turkish Electricity Transmission Company and is compared with some conventional and intelligent methods in terms of classification accuracy and training/testing duration. The achieved results show that the proposed method exhibits superior performance than that of the other methods compared in the meaning of both diagnosis accuracy and computational time. Analysis performed on the physical faults, where the transformers fault types are verified with the electrical test methods, confirms the validity and reliability of the proposed method, as well. Being free from parameter settings is another advantage of this method for using it in online oil-gas analysis applications. © 2020 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofElectric Power Systems Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCommon vector approachen_US
dc.subjectDissolved gas analysisen_US
dc.subjectFault diagnosisen_US
dc.subjectFeature extractionen_US
dc.subjectIntelligent methodsen_US
dc.subjectOil-immersed power transformersen_US
dc.subjectClassification (of information)en_US
dc.subjectDissolutionen_US
dc.subjectElectric transformer testingen_US
dc.subjectFailure analysisen_US
dc.subjectGas chromatographyen_US
dc.subjectOil filled transformersen_US
dc.subjectPower transformersen_US
dc.subjectReliability analysisen_US
dc.subjectVectorsen_US
dc.subjectClassification accuracyen_US
dc.subjectDissolved gas analyses (DGA)en_US
dc.subjectElectricity transmissionen_US
dc.subjectIntelligent methoden_US
dc.subjectOil immersed power transformeren_US
dc.subjectTraining and testingen_US
dc.subjectFault detectionen_US
dc.titleFault diagnosis of oil-immersed power transformers using common vector approachen_US
dc.typeArticleen_US
dc.identifier.volume184en_US
dc.authorid0000-0002-6402-8470-
dc.authorid0000-0001-9030-7775-
dc.authorid0000-0001-8178-3227-
dc.authorid0000-0001-8361-9738-
dc.identifier.doi10.1016/j.epsr.2020.106346-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85082859034en_US
dc.identifier.wosWOS:000525770200050en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

39
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

34
checked on Nov 16, 2024

Page view(s)

62
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.