Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/37093
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHalıcı, Serpil-
dc.contributor.authorKarataş, Adnan-
dc.contributor.authorSütlü, S.-
dc.date.accessioned2021-02-02T09:23:57Z
dc.date.available2021-02-02T09:23:57Z
dc.date.issued2020-
dc.identifier.issn0021-8693-
dc.identifier.urihttps://hdl.handle.net/11499/37093-
dc.identifier.urihttps://doi.org/10.1016/j.jalgebra.2020.01.022-
dc.description.abstractWe studied both the double cross product and the bicrossproduct constructions for the Hom-Hopf algebras of general (?,ß)-type. This allows us to consider the universal enveloping Hom-Hopf algebras of Hom-Lie algebras, which are of (?,Id)-type. We show that the universal enveloping Hom-Hopf algebras of a matched pair of Hom-Lie algebras form a matched pair of Hom-Hopf algebras. We observe also that, the semi-dualization of a double cross product Hom-Hopf algebra is a bicrossproduct Hom-Hopf algebra. In particular, we apply this result to the universal enveloping Hom-Hopf algebras of a matched pair of Hom-Lie algebras to obtain Hom-Lie-Hopf algebras. © 2020 Elsevier Inc.en_US
dc.language.isoenen_US
dc.publisherAcademic Press Inc.en_US
dc.relation.ispartofJournal of Algebraen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBicrossproducten_US
dc.subjectDouble cross producten_US
dc.subjectHom-Hopf algebrasen_US
dc.subjectHom-Lie algebrasen_US
dc.titleHom-Lie-Hopf algebrasen_US
dc.typeArticleen_US
dc.identifier.volume553en_US
dc.identifier.startpage26
dc.identifier.startpage26en_US
dc.identifier.endpage88en_US
dc.authorid0000-0002-8071-0437-
dc.identifier.doi10.1016/j.jalgebra.2020.01.022-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85079836678en_US
dc.identifier.wosWOS:000522801000002en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept17.04. Mathematics-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

40
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.