Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/37105
Title: | Selected ellipticine derivatives, known to target topoisomerase II, suppress the alternative lengthening of telomere (ALT) pathway in telomerase–negative cells | Authors: | Zencir, Sevil Hsieh, M.-H. Hsu, J.-S. Ergun, Y. Chou, G.-L. Li, T.-K. Teng, S.-C. |
Keywords: | Alternative lengthening of telomere Anti-cancer therapeutics DNA topoisomerase II Ellipticine derivatives antineoplastic agent DNA topoisomerase (ATP hydrolysing) ellipticine ellipticine derivative icrf 93 telomerase inhibitor unclassified drug gyrase inhibitor telomerase ALT cell line Article cell viability comet assay controlled study cytotoxicity DNA strand breakage drug selectivity female fluorescence in situ hybridization human human cell immunofluorescence MTS assay phenotype priority journal SaOS-2 cell line telomere length cell line chemistry drug effect fluorescent antibody technique genetics telomere homeostasis Antineoplastic Agents Cell Line Ellipticines Fluorescent Antibody Technique Humans In Situ Hybridization, Fluorescence Telomerase Telomere Homeostasis Topoisomerase II Inhibitors |
Publisher: | Springer | Abstract: | Background: DNA topoisomerase and telomerase enzymes are popular targets of several anti-tumor drugs. Smooth proceeding of telomeric recombination requires Topoisomerase II (Top2), which is involved in telomere-telomere recombination through functioning in relaxation of positive supercoils among the cells adopting telomerase-independent Alternative lengthening of telomere (ALT) pathway. Most of the inhibitors reported so far have been designed to targetsolely telomerase-positive cells, which can potentially lead to therapeutic failure because tumor cells treated with telomerase inhibitors can activate the ALT pathway for telomere maintenance. Knowing that ALT cells are more sensitive against a Top2 inhibitor, ICRF-93 agent, compared to telomerase-positive cells, we analyzed two selected ellipticine derivatives that we recently reported as TopII-targeting compounds, to assess their effects on the formation of DNA breaks and suppression of ALT pathway. Methods: Cell viability, Comet, C-Circle assays, dot blot, immunofluorescence staining, and telomere fluorescence in situ hybridization (FISH) staining were used for determining the effect of the compounds on ALT status of tumor cells. Results and conclusions: Treatment of ALT cells with ellipticine derivatives resulted in the formation of DNA breaks and suppression of ALT-associated phenotypes in vitro. Our results will contribute to the development of therapeutic strategies combining telomerase and ALT pathway inhibitors. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature. | URI: | https://hdl.handle.net/11499/37105 https://doi.org/10.1007/s00432-020-03213-x |
ISSN: | 0171-5216 |
Appears in Collections: | PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection Tıp Fakültesi Koleksiyonu WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
4
checked on Oct 13, 2024
WEB OF SCIENCETM
Citations
4
checked on Nov 15, 2024
Page view(s)
52
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.