Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/37166
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKalaycı, Can Berk-
dc.contributor.authorPolat, Olcay-
dc.contributor.authorAkbay, M.A.-
dc.date.accessioned2021-02-02T09:24:18Z
dc.date.available2021-02-02T09:24:18Z
dc.date.issued2020-
dc.identifier.issn2210-6502-
dc.identifier.urihttps://hdl.handle.net/11499/37166-
dc.identifier.urihttps://doi.org/10.1016/j.swevo.2020.100662-
dc.description.abstractPortfolio optimization with cardinality constraints turns out to be a mixed-integer quadratic programming problem which is proven to be NP-Complete that limits the efficiency of exact solution approaches, often because of the long-running times. Therefore, particular attention has been given to approximate approaches such as metaheuristics which do not guarantee optimality, yet may expeditiously provide near-optimal solutions. The purpose of this study is to present an efficient hybrid metaheuristic algorithm that combines critical components from continuous ant colony optimization, artificial bee colony optimization and genetic algorithms for solving cardinality constrained portfolio optimization problem. Computational results on seven publicly available benchmark problems confirm the effectiveness of the hybrid integration mechanism. Moreover, comparisons against other methods’ results in the literature reveal that the proposed solution approach is competitive with state-of-the-art algorithms. © 2020 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofSwarm and Evolutionary Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial bee colonyen_US
dc.subjectCardinality constraintsen_US
dc.subjectContinuous ant colony optimizationen_US
dc.subjectGenetic algorithmsen_US
dc.subjectMetaheuristicsen_US
dc.subjectPortfolio optimizationen_US
dc.subjectAnt colony optimizationen_US
dc.subjectArtificial intelligenceen_US
dc.subjectFinancial data processingen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectInteger programmingen_US
dc.subjectQuadratic programmingen_US
dc.subjectArtificial bee coloniesen_US
dc.subjectArtificial bee colony optimizationsen_US
dc.subjectHybrid metaheuristic algorithmsen_US
dc.subjectMeta heuristicsen_US
dc.subjectMixed integer quadratic programmingen_US
dc.subjectState-of-the-art algorithmsen_US
dc.subjectConstrained optimizationen_US
dc.titleAn efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimizationen_US
dc.typeArticleen_US
dc.identifier.volume54en_US
dc.authorid0000-0003-2355-7015-
dc.authorid0000-0003-2642-0233-
dc.identifier.doi10.1016/j.swevo.2020.100662-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85079283313en_US
dc.identifier.wosWOS:000528484400004en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.09. Industrial Engineering-
crisitem.author.dept10.09. Industrial Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

46
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

35
checked on Nov 21, 2024

Page view(s)

82
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.