Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/37187
Title: A novel 3-((5-methylpyridin-2-yl)amino)isobenzofuran-1(3H)-one: Molecular structure describe, X-ray diffractions and DFT calculations, antioxidant activity, DNA binding and molecular docking studies
Authors: Yılmaz, Zeynep Tanrıkulu
Odabaşoğlu, H.Y.
Şenel, P.
Adımcılar, V.
Erdoğan, T.
Özdemir, A.D.
Gölcü, A.
Keywords: Antioxidant property
Crystal structure
DFT
DNA binding
Molecular docking
Phthalide
Antioxidants
Binding energy
Chemical analysis
Complexation
DNA
Electronic properties
Geometry
Ground state
Hydrogen bonds
Molecular modeling
Plants (botany)
Quantum chemistry
Single crystals
X ray powder diffraction
Antioxidant properties
Molecular electrostatic potentials
Phthalides
Quantum chemical computations
Radical scavenging activity
X-ray single-crystal diffraction
Publisher: Elsevier B.V.
Abstract: In this work, the structure of a novel phthalide derivative, 3-((5-methylpyridin-2-yl) amino) isobenzofuran-1(3H)-one, was analyzed both experimentally and theoretically by X-ray single crystal diffraction technique, IR spectroscopy, and quantum chemical computation. The X-ray diffraction analysis indicates that 3-((5-methylpyridin-2-yl) amino) isobenzofuran-1(3H)-one crystallizes in a monoclinic space group P21/n with unit-cell parameters a = 8.0712(7) Å, b = 6.6762(4) Å, c = 23.005(2) Å, ß = 98.813(7)° and Z = 4. Additionally, DFT method at B3LYP level by using the hybrid functional with 6-311G (d, p) basis set have been used in the geometry optimizations and vibrational frequencies calculations of the title compound in ground state. The geometrical parameters obtained from XRD studies and the calculated values are in good agreement to each other. In addition, the electronic properties, such as HOMO and LUMO energies, and thermodynamic properties were calculated with the same method. The chemical reactivity estimation, the molecular electrostatic potential (MEP) surface map and PES scan of the related molecule were investigated with theoretical calculations at the B3LYP/6-31?G(d,p) and B3LYP/3-21G levels, respectively. The Folin-Ciocalteu's method have been used to determine the total phenolic (TP) content of the compound under study and it was found to be 0.14 (±0.0) mg gallic acid equivalents (GAE)/g. Antioxidant activities were evaluated by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity and ferric reducing anti-oxidant power assay (FRAP). Metal chelating assay was based on the measurement of iron-ferrozine absorbance at 562 nm. The DNA binding affinity for double strain fish sperm DNA (dsFSDNA) was investigated by electronic absorption titration, thermal denaturation measurement and viscosity techniques which indicate that the title compound binds to dsFSDNA by minor groove and has a binding constant of 9.59 × 104. Additionally, in molecular docking studies, it has been observed that the lowest energy docking pose binds to minor groove of DNA and 1-DNA complex has been stabilized by several hydrogen bonds. The binding affinity of the lowest energy docking pose was found to be -8.3 kcal/mol. © 2019 Elsevier B.V.
URI: https://hdl.handle.net/11499/37187
https://doi.org/10.1016/j.molstruc.2019.127585
ISSN: 0022-2860
Appears in Collections:Denizli Teknik Bilimler Meslek Yüksekokulu Koleksiyonu
Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Jun 29, 2024

WEB OF SCIENCETM
Citations

16
checked on Jul 10, 2024

Page view(s)

26
checked on May 27, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.