Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/37227
Title: Series spaces derived from absolute Fibonacci summability and matrix transformations
Authors: Gökçe, Fadime
Sarıgöl, Mehmet Ali
Keywords: Absolute summability
Fibonacci numbers
Maddox’s space
Matrix transformations
Sequence space
Publisher: Springer
Abstract: In this study we introduce a new series space | F?| (p) as the domain of a matrix corresponding to the absolute Fibonacci summability in the Maddox’s space l(p) and show that it is linearly isomorphic to the space l(p) and that it is an FK-space. Also, we determine its duals, base and characterize certain matrix transformations on that space. © 2019, Unione Matematica Italiana.
URI: https://hdl.handle.net/11499/37227
https://doi.org/10.1007/s40574-019-00201-z
ISSN: 1972-6724
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 21, 2024

Page view(s)

36
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.