Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/37374
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHalıcı, Serpil-
dc.date.accessioned2021-02-02T09:25:32Z
dc.date.available2021-02-02T09:25:32Z
dc.date.issued2020-
dc.identifier.issn0170-4214-
dc.identifier.urihttps://hdl.handle.net/11499/37374-
dc.identifier.urihttps://doi.org/10.1002/mma.6410-
dc.description.abstractIn this study, we have considered Gaussian Lucas numbers and given the properties of these numbers. Then, we have defined the quaternions that accept these numbers as coefficients. We have examined whether the numbers defined provide some identities for quaternions in the literature. Moreover, we have given some important properties of these numbers with the help of matrices. © 2020 John Wiley & Sons, Ltd.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Ltden_US
dc.relation.ispartofMathematical Methods in the Applied Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGaussian numbersen_US
dc.subjectquaternionsen_US
dc.subjectrecurrence relationsen_US
dc.subjectMathematical techniquesen_US
dc.subjectGaussiansen_US
dc.subjectLucas numbersen_US
dc.subjectEngineeringen_US
dc.titleOn quaternion-Gaussian Lucas numbersen_US
dc.typeConference Objecten_US
dc.authorid0000-0002-8071-0437-
dc.identifier.doi10.1002/mma.6410-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85083701714en_US
dc.identifier.wosWOS:000527269300001en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 22, 2024

Page view(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.