Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/37437
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKoyuncuoğlu, Mehmet Ulaş-
dc.contributor.authorDemir, L.-
dc.date.accessioned2021-02-02T09:25:58Z
dc.date.available2021-02-02T09:25:58Z
dc.date.issued2020-
dc.identifier.issn0956-5515-
dc.identifier.urihttps://hdl.handle.net/11499/37437-
dc.identifier.urihttps://doi.org/10.1007/s10845-020-01647-1-
dc.description.abstractThe buffer allocation problem (BAP) aims to determine the optimal buffer configuration for a production line under the predefined constraints. The BAP is an NP-hard combinatorial optimization problem and the solution space exponentially grows as the problem size increases. Therefore, problem specific heuristic or meta-heuristic search algorithms are widely used to solve the BAP. In this study two population-based search algorithms; i.e. Combat Genetic Algorithm (CGA) and Big Bang-Big Crunch (BB-BC) algorithm, are proposed in solving the BAP to maximize the throughput of the line under the total buffer size constraint for unreliable production lines. Performances of the proposed algorithms are tested on existing benchmark problems taken from the literature.The experimental results showed that the proposed BB–BC algorithm yielded better results than the proposed CGA as well as other algorithms reported in the literature. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Intelligent Manufacturingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBig bang–big crunch algorithmen_US
dc.subjectBuffer allocation problemen_US
dc.subjectCombat genetic algorithmen_US
dc.subjectProduction linesen_US
dc.subjectThroughput maximizationen_US
dc.subjectCombinatorial optimizationen_US
dc.subjectHeuristic algorithmsen_US
dc.subjectLearning algorithmsen_US
dc.subjectNP-harden_US
dc.subjectReservation systemsen_US
dc.subjectThroughputen_US
dc.subjectBench-mark problemsen_US
dc.subjectBuffer allocationen_US
dc.subjectBuffer sizesen_US
dc.subjectCombinatorial optimization problemsen_US
dc.subjectMeta-heuristic search algorithmsen_US
dc.subjectProduction lineen_US
dc.subjectSearch Algorithmsen_US
dc.subjectSolution spaceen_US
dc.subjectGenetic algorithmsen_US
dc.titleA comparison of combat genetic and big bang–big crunch algorithms for solving the buffer allocation problemen_US
dc.typeArticleen_US
dc.authorid0000-0002-5437-1865-
dc.identifier.doi10.1007/s10845-020-01647-1-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85091184392en_US
dc.identifier.wosWOS:000571084100002en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept08.01. Management Information Systems-
Appears in Collections:Bilgi İşlem Daire Başkanlığı Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

10
checked on Nov 21, 2024

Page view(s)

64
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.