Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/37518
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMustafayev, R.-
dc.contributor.authorKüçükaslan, Abdulhamit-
dc.date.accessioned2021-02-02T09:26:36Z
dc.date.available2021-02-02T09:26:36Z
dc.date.issued2020-
dc.identifier.issn1072-947X-
dc.identifier.urihttps://hdl.handle.net/11499/37518-
dc.identifier.urihttps://doi.org/10.1515/gmj-2020-2056-
dc.description.abstractIn this paper, we find the condition on a function ? and a weight v which ensures the equivalency of norms of the Riesz potential and the fractional maximal function in generalized weighted Morrey spaces Mp,?(Rn , v) and generalized weighted central Morrey spaces ˙M p,?(Rn , v), when v belongs to the Muckenhoupt A?-class. © 2020 Walter de Gruyter GmbH, Berlin/Boston 2020.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofGeorgian Mathematical Journalen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfractional maximal operatoren_US
dc.subjectGeneralized weighted (central) Morrey spacesen_US
dc.subjectRiesz potentialen_US
dc.subjectweighten_US
dc.titleAn extension of the Muckenhoupt-Wheeden theorem to generalized weighted Morrey spacesen_US
dc.typeArticleen_US
dc.authorid0000-0002-9207-8977-
dc.identifier.doi10.1515/gmj-2020-2056-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85082333788en_US
dc.identifier.wosWOS:000680666200009en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept03.03. Capital Market-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Uygulamalı Bilimler Yüksekokulu Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 22, 2024

Page view(s)

44
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.