Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/37547
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShehu, H.A.-
dc.contributor.authorHaidar Sharif, M.-
dc.contributor.authorUyaver, S.-
dc.contributor.authorTokat, Sezai-
dc.contributor.authorRamadan, R.A.-
dc.date.accessioned2021-02-02T09:26:53Z
dc.date.available2021-02-02T09:26:53Z
dc.date.issued2020-
dc.identifier.isbn18678211 (ISSN)-
dc.identifier.isbn9783030600358-
dc.identifier.urihttps://hdl.handle.net/11499/37547-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-60036-5_8-
dc.description.abstractSentiment analysis is a process of computationally detecting and classifying opinions written in a piece of writer’s text. It determines the writer’s impression as achromatic or negative or positive. Sentiment analysis became unsophisticated due to the invention of Internet-based societal media. At present, usually people express their opinions by dint of Twitter. Henceforth, Twitter is a fascinating medium for researchers to perform data analysis. In this paper, we address a handful of methods to prognosticate the sentiment on Turkish tweets by taking up polarity lexicon as well as artificial intelligence. The polarity lexicon method uses a dictionary of words and accords with the words among the harvested tweets. The tweets are then grouped into either positive tweets or negative tweets or neutral tweets. The methods of artificial intelligence use either individually or combined classifiers e.g., support vector machine (SVM), random forest (RF), maximum entropy (ME), and decision tree (DT) for categorizing positive tweets, negative tweets, and neutral tweets. To analyze sentiment, a total of 13000 Turkish tweets are collected from Twitter with the help of Twitter’s application programming interface (API). Experimental results show that the mean performance of our proposed methods is greater than 72%. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectEntropyen_US
dc.subjectSentimenten_US
dc.subjectSVMen_US
dc.subjectTurkishen_US
dc.subjectTwitteren_US
dc.subjectApplication programming interfaces (API)en_US
dc.subjectDecision treesen_US
dc.subjectSentiment analysisen_US
dc.subjectSocial networking (online)en_US
dc.subjectSupport vector machinesen_US
dc.subjectCombined classifiersen_US
dc.subjectInternet baseden_US
dc.subjectTurkishsen_US
dc.subjectMaximum entropy methodsen_US
dc.titleSentiment analysis of turkish twitter data using polarity lexicon and artificial intelligenceen_US
dc.typeConference Objecten_US
dc.identifier.volume332 LNICSTen_US
dc.identifier.startpage113
dc.identifier.startpage113en_US
dc.identifier.endpage125en_US
dc.authorid0000-0003-0193-8220-
dc.identifier.doi10.1007/978-3-030-60036-5_8-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85092173613en_US
dc.ownerPamukkale University-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.grantfulltextnone-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

Page view(s)

34
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.