Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/38310
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAsci, Mustafa-
dc.contributor.authorYakar, Merve-
dc.date.accessioned2021-02-02T12:41:02Z-
dc.date.available2021-02-02T12:41:02Z-
dc.date.issued2020-
dc.identifier.issn0972-5555-
dc.identifier.urihttps://hdl.handle.net/11499/38310-
dc.identifier.urihttps://doi.org/10.17654/NT046010097-
dc.description.abstractIn this paper, we define and study the bivariate balancing polynomials with boundary conditions. We identify and prove the general terms, the Binet formulas, matrix formula and partial derivatives of bivariate balancing polynomials.en_US
dc.description.abstractC1 [Asci, Mustafa; Yakar, Merve] Pamukkale Univ, Sci & Arts Fac, Dept Math, Kinikli Denizli, Turkey.en_US
dc.language.isoenen_US
dc.publisherPUSHPA PUBLISHING HOUSEen_US
dc.relation.ispartofJP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONSen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbalancing numbers; balancing polynomials; bivariate polynomialsen_US
dc.titleOn bivariate balancing polynomialsen_US
dc.typeArticleen_US
dc.identifier.volume46en_US
dc.identifier.issue1en_US
dc.identifier.startpage97-
dc.identifier.startpage97en_US
dc.identifier.endpage108en_US
dc.identifier.doi10.17654/NT046010097-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosWOS:000538403200007en_US
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

1
checked on Nov 21, 2024

Page view(s)

44
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.