Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/39129
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDilmen, E-
dc.date.accessioned2022-02-28T07:13:27Z-
dc.date.available2022-02-28T07:13:27Z-
dc.date.issued2020-
dc.identifier.issn2405-8963-
dc.identifier.urihttps://hdl.handle.net/11499/39129-
dc.identifier.urihttps://doi.org/10.1016/j.ifacol.2020.12.1390-
dc.description.abstractThis paper proposes Runge-Kutta neural disturbance observer to enhance the robustness of PID control of a system with general multicompartment lung mechanics. It is designed to observe the states of a particular type continous time, single-input single-output system where the states cannot be measured but can be observed through the single output and there exists parametric uncertainity or disturbance affecting the underlying system. It utilizes artificial neural network to estimate the disturbance online. Once an accurate disturbance estimation is obtained, it is incorporated in the system state equation and passed through the well-known Runge-Kutta integrator to predict the state values. Hence, the predicted states are obtained considering the disturbance and more robust state observation is achieved. The proposed observer is simple and easy to implement. Adaptation of the neural network is performed using gradient descent with an adaptive learning rate which guarantees convergence. The simulation results demonstrate that the proposed observer gains a significant success in enhancing the robustness of PID control at even high level of disturbance. Note that, multicompartment lung mechanics system is a stand-in model that can mimic the behavior of human lung. Thus, it is appropriate for hardware-in-the-loop simulation which opens a path to the real-patient-tests of mechanical respiratory systems in the future. Copyright (C) 2020 The Authors.en_US
dc.language.isoenen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofIFAC PAPERSONLINEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMulticompartment lung mechanics; PID; artificial neural network;en_US
dc.subjectdisturbance observer; robust control; Runge-Kutta discretizationen_US
dc.titleRobust PID Control of Multicompartment Lung Mechanics Model Using Runge-Kutta Neural Disturbance Observeren_US
dc.typeConference Objecten_US
dc.identifier.volume53en_US
dc.identifier.issue2en_US
dc.identifier.startpage8814-
dc.identifier.startpage8814en_US
dc.identifier.endpage8819en_US
dc.identifier.doi10.1016/j.ifacol.2020.12.1390-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85105111682en_US
dc.identifier.wosWOS:000652593100010en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.dept20.04. Mechatronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S2405896320318000-main.pdf605.43 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

22
checked on Aug 24, 2024

Download(s)

24
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.