Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/39293
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAsci, M-
dc.contributor.authorGurel, E-
dc.date.accessioned2022-02-28T07:13:56Z-
dc.date.available2022-02-28T07:13:56Z-
dc.date.issued2013-
dc.identifier.issn1310-5132-
dc.identifier.urihttps://hdl.handle.net/11499/39293-
dc.description.abstractIn this study we define and study the Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials. We give generating function, Binet formula, explicit formula, Q matrix, determinantal representations and partial derivation of these polynomials. By defining these Gaussian polynomials for special cases G J(n) (1) is the Gaussian Jacobsthal numbers, G j(n) (1) is the Gaussian Jacobsthal Lucas numbers defined in [2].en_US
dc.language.isoenen_US
dc.publisherBULGARIAN ACAD SCIENCEen_US
dc.relation.ispartofNOTES ON NUMBER THEORY AND DISCRETE MATHEMATICSen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectJacobsthal polynomials; Jacobsthal Lucas polynomials; Gaussian Fibonaccien_US
dc.subjectnumbersen_US
dc.titleGaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomialsen_US
dc.typeArticleen_US
dc.identifier.volume19en_US
dc.identifier.issue1en_US
dc.identifier.startpage25-
dc.identifier.startpage25en_US
dc.identifier.endpage36en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosWOS:000415820500005en_US
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

15
checked on Nov 21, 2024

Page view(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.