Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4101
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTurhan, Yıldıray.-
dc.contributor.authorTokat, Sezai.-
dc.contributor.authorEren, R.-
dc.date.accessioned2019-08-16T11:32:15Z
dc.date.available2019-08-16T11:32:15Z
dc.date.issued2007-
dc.identifier.issn0020-0255-
dc.identifier.urihttps://hdl.handle.net/11499/4101-
dc.identifier.urihttps://doi.org/10.1016/j.ins.2007.06.029-
dc.description.abstractIn this paper, experimental, computational intelligence based and statistical investigations of warp tensions in different back-rest oscillations are presented. Firstly, in the experimental stage, springs having different stiffnesses are used to obtain different back-rest oscillations. For each spring, fabrics are woven in different weft densities and the warp tensions are measured and saved during weaving process. Secondly, in the statistical investigation, the experimental data are analyzed by using linear multiple and quadratic multiple-regression models. Later, in the computational intelligence based investigation, the data obtained from the experimental study are analyzed by using artificial neural networks that are universal approximators which provide a massively parallel processing and decentralized computing. Specially, radial basis function neural network structure is chosen. In this structure, cross-validation technique is used in order to determine the number of radial basis functions. Finally, the results of regression analysis, the computational intelligence based analysis and experimental measurements are compared by using the coefficient of determination. From the results, it is shown that the computational intelligence based analysis indicates a better agreement with the experimental measurement than the statistical analysis. © 2007 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofInformation Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBack-rest oscillationen_US
dc.subjectCross-validationen_US
dc.subjectData regressionen_US
dc.subjectNeural networksen_US
dc.subjectRadial basis functionen_US
dc.subjectWarp tensionen_US
dc.subjectWeft densityen_US
dc.subjectFabricsen_US
dc.subjectMathematical modelsen_US
dc.subjectParallel processing systemsen_US
dc.subjectQuadratic programmingen_US
dc.subjectRadial basis function networksen_US
dc.subjectRegression analysisen_US
dc.subjectStiffnessen_US
dc.subjectWeavingen_US
dc.subjectBack-rest oscillationsen_US
dc.subjectCross-validation techniqueen_US
dc.subjectMultiple-regression modelsen_US
dc.subjectWeft densitiesen_US
dc.titleStatistical and computational intelligence tools for the analyses of warp tension in different back-rest oscillationsen_US
dc.typeArticleen_US
dc.identifier.volume177en_US
dc.identifier.issue23en_US
dc.identifier.startpage5237
dc.identifier.startpage5237en_US
dc.identifier.endpage5252en_US
dc.identifier.doi10.1016/j.ins.2007.06.029-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-34548604302en_US
dc.identifier.wosWOS:000250285400009en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
crisitem.author.dept10.06. Textile Engineering-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

15
checked on Sep 1, 2024

WEB OF SCIENCETM
Citations

11
checked on Sep 8, 2024

Page view(s)

42
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.