Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4150
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAyvaz, Mustafa Tamer.-
dc.contributor.authorKarahan, Halil.-
dc.contributor.authorAral, M.M.-
dc.date.accessioned2019-08-16T11:32:24Z-
dc.date.available2019-08-16T11:32:24Z-
dc.date.issued2007-
dc.identifier.issn0022-1694-
dc.identifier.urihttps://hdl.handle.net/11499/4150-
dc.identifier.urihttps://doi.org/10.1016/j.jhydrol.2007.06.018-
dc.description.abstractIn this study, we propose an inverse solution algorithm through which both the aquifer parameters and the zone structure of these parameters can be determined based on a given set of observations on piezometric heads. In the zone structure identification problem, kernel-based fuzzy c-means (KFCM) clustering method is used. The association of the zone structure with the transmissivity distribution is accomplished through a coupled simulation-optimization model. In the optimization model, genetic algorithm (GA) is used due to its efficiency in finding global or near global optimum solutions. Since the solution is based on the GA procedures, the optimization process starts with a randomly generated initial solution. Thus, there is no need to define an initial estimate of the solution. This is an advantage when compared to other studies reported in the literature. Further, the objective function used in the optimization model does not include a reference to field transmissivity data, which is another advantage of the proposed methodology. Numerical examples are provided to demonstrate the performance of the proposed algorithm. In the first example, transmissivity values and zone structures are determined for a known number of zones in the solution domain. In the second example, optimum number of zones as well as the transmissivity values and the zone structures are determined iteratively. A sensitivity analysis is also performed to test the performance of the proposed solution algorithm based on the number of observation data necessary to solve the problem accurately. Numerical results indicate that the proposed algorithm is effective and efficient and may be used in the inverse parameter estimation problems when both parameter values and zone structure are unknown. © 2007 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Hydrologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGenetic algorithmen_US
dc.subjectGroundwater modelingen_US
dc.subjectInverse problemsen_US
dc.subjectKernel based fuzzy c-means clusteringen_US
dc.subjectParameter estimationen_US
dc.subjectZone structureen_US
dc.subjectComputer simulationen_US
dc.subjectFuzzy setsen_US
dc.subjectGenetic algorithmsen_US
dc.subjectMathematical modelsen_US
dc.subjectNumerical methodsen_US
dc.subjectOptimizationen_US
dc.subjectSensitivity analysisen_US
dc.subjectPiezometric headsen_US
dc.subjectTransmissivity distributionen_US
dc.subjectAquifersen_US
dc.subjectaquifer characterizationen_US
dc.subjectfuzzy mathematicsen_US
dc.subjectgenetic algorithmen_US
dc.subjectgroundwateren_US
dc.subjecthydrological modelingen_US
dc.subjectinverse analysisen_US
dc.subjectnumerical modelen_US
dc.subjectoptimizationen_US
dc.subjectsensitivity analysisen_US
dc.subjecttransmissivityen_US
dc.subjectzoneen_US
dc.titleAquifer parameter and zone structure estimation using kernel-based fuzzy c-means clustering and genetic algorithmen_US
dc.typeArticleen_US
dc.identifier.volume343en_US
dc.identifier.issue3-4en_US
dc.identifier.startpage240-
dc.identifier.startpage240en_US
dc.identifier.endpage253en_US
dc.authorid0000-0001-5346-5686-
dc.authorid0000-0002-8566-2825-
dc.identifier.doi10.1016/j.jhydrol.2007.06.018-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-34548118351en_US
dc.identifier.wosWOS:000249702500011en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

61
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

52
checked on Nov 21, 2024

Page view(s)

60
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.