Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4176
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKulak, Osman.-
dc.contributor.authorYilmaz, I.O.-
dc.contributor.authorGünther, H.-O.-
dc.date.accessioned2019-08-16T11:32:29Z
dc.date.available2019-08-16T11:32:29Z
dc.date.issued2007-
dc.identifier.issn0020-7543-
dc.identifier.urihttps://hdl.handle.net/11499/4176-
dc.identifier.urihttps://doi.org/10.1080/00207540600791608-
dc.description.abstractIn printed circuit board (PCB) assembly, collect-and-place machines, which use a revolver-type placement head to mount electronic components onto the board, represent one of the most popular types of assembly machinery. The assignment of feeders to slots in the component magazine and the sequencing of the placement operations are the main optimisation problems for scheduling the operations of an automated placement machine. In this paper, we present different genetic algorithms (GAs) for simultaneously solving these highly interrelated problems for collect-and-place machines in PCB assembly. First we consider single-gantry machines as the basic type of machinery. In the conventional GA approach all placement operations and the feeder-slot assignment are represented by a single chromosome. In order to increase the efficiency of the genetic operators, we present a novel GA approach, which integrates a clustering algorithm for generating sub-sections of the PCB and grouping the corresponding placement operations. It is shown that the proposed GAs can be extended to schedule dual-gantry placement machines, which are equipped with two independent placement heads and two dedicated component magazines. Hence, component feeders have to be allocated between the two magazines. To solve this allocation problem, two different heuristic strategies are proposed. Finally, detailed numerical experiments are carried out to evaluate the performances of the proposed GAs.en_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Production Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCollect-and-place machineen_US
dc.subjectGenetic algorithmen_US
dc.subjectPCB assemblyen_US
dc.subjectUnique setupen_US
dc.subjectAssemblyen_US
dc.subjectGenetic algorithmsen_US
dc.subjectOptimizationen_US
dc.subjectProblem solvingen_US
dc.subjectPrinted circuit boardsen_US
dc.titlePCB assembly scheduling for collect-and-place machines using genetic algorithmsen_US
dc.typeArticleen_US
dc.identifier.volume45en_US
dc.identifier.issue17en_US
dc.identifier.startpage3949
dc.identifier.startpage3949en_US
dc.identifier.endpage3969en_US
dc.identifier.doi10.1080/00207540600791608-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-34547479704en_US
dc.identifier.wosWOS:000247967400008en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

40
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

37
checked on Nov 22, 2024

Page view(s)

54
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.