Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4203
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAykut, Şeref.-
dc.contributor.authorGölcü, Mustafa.-
dc.contributor.authorSemiz, Süleyman.-
dc.contributor.authorErgür, H.S.-
dc.date.accessioned2019-08-16T11:32:34Z
dc.date.available2019-08-16T11:32:34Z
dc.date.issued2007-
dc.identifier.issn0924-0136-
dc.identifier.urihttps://hdl.handle.net/11499/4203-
dc.identifier.urihttps://doi.org/10.1016/j.jmatprotec.2007.02.045-
dc.description.abstractIn this study, artificial neural networks (ANNs) was used for modeling the effects of machinability on chip removal cutting parameters for face milling of stellite 6 in asymmetric milling processes. Cutting forces with three axes (Fx, Fy and Fz) were predicted by changing cutting speed (Vc), feed rate (f) and depth of cut (ap) under dry conditions. Experimental studies were carried out to obtain training and test data and scaled conjugate gradient (SCG) feed-forward back-propagation algorithm was used in the networks. Main parameters for the experiments are the cutting speed (Vc, m/min), feed rate (f, mm/min), depth of cut (ap, mm) and cutting forces (Fx, Fy and Fz, N). Vc, f and ap were used as the input dataset while Fx, Fy and Fz were used as the output dataset. Average percentage error (APEs) values for Fx, Fy and Fz using the proposed model were obtained around 2 and 10% for training and testing, respectively. These results show that the ANNs can be used for predicting the effects of machinability on chip removal cutting parameters for face milling of stellite 6 in asymmetric milling processes. © 2007.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Materials Processing Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectCutting forcesen_US
dc.subjectFace millingen_US
dc.subjectStellite 6en_US
dc.subjectAlgorithmsen_US
dc.subjectFeedforward controlen_US
dc.subjectMachinabilityen_US
dc.subjectMilling (machining)en_US
dc.subjectNeural networksen_US
dc.subjectScaled conjugate gradient (SCG)en_US
dc.subjectCuttingen_US
dc.titleModeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural networken_US
dc.typeArticleen_US
dc.identifier.volume190en_US
dc.identifier.issue1-3en_US
dc.identifier.startpage199
dc.identifier.startpage199en_US
dc.identifier.endpage203en_US
dc.identifier.doi10.1016/j.jmatprotec.2007.02.045-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-34248164412en_US
dc.identifier.wosWOS:000247422600028en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknik Eğitim Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

64
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

47
checked on Nov 21, 2024

Page view(s)

40
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.