Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4221
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaran, T.-
dc.contributor.authorBacanlı, Ülker Güner-
dc.date.accessioned2019-08-16T11:32:54Z-
dc.date.available2019-08-16T11:32:54Z-
dc.date.issued2007-
dc.identifier.issn0378-4738-
dc.identifier.urihttps://hdl.handle.net/11499/4221-
dc.description.abstractIt is a fact that a hydrological time series cannot be defined as a true model in practice. One of the important problems in stochastic hydrology is to determine the most appropriate model, and therefore modellers have certain flexibilities in exercising their subjective judgment in model identification. For this purpose, autocorrelation function [ACF], minimum residual variance [Min Var(e)], and Akaike Information Criterion [AIC- AICC-modified AIC- and FPE-final prediction error-] are widely used for testing the goodness of fit (model identification or diagnostic check) in time series modelling. The objective of this paper is to investigate diagnostic checking criteria, to compare their performance for linear autoregressive (AR) models, and to define a new entropy-based criterion (transinformation). In the presented study, observed and synthetic data sets are modelled and recognised criteria are evaluated in order to compare the diagnostic checking. All data sets are investigated for AR(1), AR(2), AR(3), ARMA(1,1) and ARMA(1,2) models which are mostly used in hydrology. The results showed that the performance of the transinformation criterion is superior to the other investigated diagnostic checking criteria.en_US
dc.language.isoenen_US
dc.relation.ispartofWater SAen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDiagnostic checkingen_US
dc.subjectEntropyen_US
dc.subjectOrder determinationen_US
dc.subjectTime series modellingen_US
dc.subjectTransinformationen_US
dc.subjectAutocorrelationen_US
dc.subjectError analysisen_US
dc.subjectHydrologyen_US
dc.subjectSecurity of dataen_US
dc.subjectStochastic control systemsen_US
dc.subjectAutocorrelation functionen_US
dc.subjectTime series analysisen_US
dc.subjectautocorrelationen_US
dc.subjectentropyen_US
dc.subjectnumerical modelen_US
dc.subjectstochasticityen_US
dc.subjecttime series analysisen_US
dc.titleAn entropy approach for diagnostic checking in time series analysisen_US
dc.typeArticleen_US
dc.identifier.volume33en_US
dc.identifier.issue4en_US
dc.identifier.startpage487-
dc.identifier.startpage487en_US
dc.identifier.endpage496en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-34547109619en_US
dc.identifier.wosWOS:000248791400009en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale_University-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept22.07. Financial Banking and Insurance-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
waters_v33_n4_a9.pdf812.09 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 14, 2024

Page view(s)

64
checked on Aug 24, 2024

Download(s)

38
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.