Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/4242
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Canyurt, Olcay Ersel. | - |
dc.contributor.author | Hajela, P. | - |
dc.date.accessioned | 2019-08-16T11:32:58Z | - |
dc.date.available | 2019-08-16T11:32:58Z | - |
dc.date.issued | 2007 | - |
dc.identifier.issn | 0305-215X | - |
dc.identifier.uri | https://hdl.handle.net/11499/4242 | - |
dc.identifier.uri | https://doi.org/10.1080/03052150601146255 | - |
dc.description.abstract | Genetic algorithms (GAs) have received considerable recent attention in problems of design optimization. The mechanics of population-based search in GAs are highly amenable to implementation on parallel computers. The present article describes a fine-grained model of parallel GA implementation that derives from a cellular-automata-like computation. The central idea behind the cellular genetic algorithm (CGA) approach is to treat the GA population as being distributed over a 2-D grid of cells, with each member of the population occupying a particular cell and defining the state of that cell. Evolution of the cell state is tantamount to updating the design information contained in a cell site and, as in cellular automata computations, takes place on the basis of local interaction with neighbouring cells. A special focus of the article is in the use of cellular automata (CA)-based models for structural analysis in conjunction with the CGA approach to optimization. In such an approach, the analysis and optimization are evolved simultaneously in a unified cellular computational framework. The article describes the implementation of this approach and examines its efficiency in the context of representative structural optimization problems. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Engineering Optimization | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cellular automata | en_US |
dc.subject | Cellular genetic algorithm (CGA) | en_US |
dc.subject | Structural analysis and design (SAND) | en_US |
dc.subject | Computational mechanics | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Parallel processing systems | en_US |
dc.subject | Structural analysis | en_US |
dc.subject | Structural optimization | en_US |
dc.subject | Cell states | en_US |
dc.subject | Cellular computational frameworks | en_US |
dc.subject | Cellular genetic algorithms (CGA) | en_US |
dc.subject | Genetic algorithms | en_US |
dc.title | A SAND approach based on cellular computation models for analysis and optimization | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 39 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 381 | en_US |
dc.identifier.endpage | 396 | en_US |
dc.authorid | 0000-0003-3690-6608 | - |
dc.identifier.doi | 10.1080/03052150601146255 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-34249046659 | en_US |
dc.identifier.wos | WOS:000247731900001 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 10.07. Mechanical Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.