Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4242
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCanyurt, Olcay Ersel.-
dc.contributor.authorHajela, P.-
dc.date.accessioned2019-08-16T11:32:58Z-
dc.date.available2019-08-16T11:32:58Z-
dc.date.issued2007-
dc.identifier.issn0305-215X-
dc.identifier.urihttps://hdl.handle.net/11499/4242-
dc.identifier.urihttps://doi.org/10.1080/03052150601146255-
dc.description.abstractGenetic algorithms (GAs) have received considerable recent attention in problems of design optimization. The mechanics of population-based search in GAs are highly amenable to implementation on parallel computers. The present article describes a fine-grained model of parallel GA implementation that derives from a cellular-automata-like computation. The central idea behind the cellular genetic algorithm (CGA) approach is to treat the GA population as being distributed over a 2-D grid of cells, with each member of the population occupying a particular cell and defining the state of that cell. Evolution of the cell state is tantamount to updating the design information contained in a cell site and, as in cellular automata computations, takes place on the basis of local interaction with neighbouring cells. A special focus of the article is in the use of cellular automata (CA)-based models for structural analysis in conjunction with the CGA approach to optimization. In such an approach, the analysis and optimization are evolved simultaneously in a unified cellular computational framework. The article describes the implementation of this approach and examines its efficiency in the context of representative structural optimization problems.en_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Optimizationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCellular automataen_US
dc.subjectCellular genetic algorithm (CGA)en_US
dc.subjectStructural analysis and design (SAND)en_US
dc.subjectComputational mechanicsen_US
dc.subjectMathematical modelsen_US
dc.subjectParallel processing systemsen_US
dc.subjectStructural analysisen_US
dc.subjectStructural optimizationen_US
dc.subjectCell statesen_US
dc.subjectCellular computational frameworksen_US
dc.subjectCellular genetic algorithms (CGA)en_US
dc.subjectGenetic algorithmsen_US
dc.titleA SAND approach based on cellular computation models for analysis and optimizationen_US
dc.typeArticleen_US
dc.identifier.volume39en_US
dc.identifier.issue4en_US
dc.identifier.startpage381en_US
dc.identifier.endpage396en_US
dc.authorid0000-0003-3690-6608-
dc.identifier.doi10.1080/03052150601146255-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-34249046659en_US
dc.identifier.wosWOS:000247731900001en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

4
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

4
checked on Nov 24, 2024

Page view(s)

36
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.