Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/4242
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Canyurt, Olcay Ersel. | - |
dc.contributor.author | Hajela, P. | - |
dc.date.accessioned | 2019-08-16T11:32:58Z | - |
dc.date.available | 2019-08-16T11:32:58Z | - |
dc.date.issued | 2007 | - |
dc.identifier.issn | 0305-215X | - |
dc.identifier.uri | https://hdl.handle.net/11499/4242 | - |
dc.identifier.uri | https://doi.org/10.1080/03052150601146255 | - |
dc.description.abstract | Genetic algorithms (GAs) have received considerable recent attention in problems of design optimization. The mechanics of population-based search in GAs are highly amenable to implementation on parallel computers. The present article describes a fine-grained model of parallel GA implementation that derives from a cellular-automata-like computation. The central idea behind the cellular genetic algorithm (CGA) approach is to treat the GA population as being distributed over a 2-D grid of cells, with each member of the population occupying a particular cell and defining the state of that cell. Evolution of the cell state is tantamount to updating the design information contained in a cell site and, as in cellular automata computations, takes place on the basis of local interaction with neighbouring cells. A special focus of the article is in the use of cellular automata (CA)-based models for structural analysis in conjunction with the CGA approach to optimization. In such an approach, the analysis and optimization are evolved simultaneously in a unified cellular computational framework. The article describes the implementation of this approach and examines its efficiency in the context of representative structural optimization problems. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Engineering Optimization | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cellular automata | en_US |
dc.subject | Cellular genetic algorithm (CGA) | en_US |
dc.subject | Structural analysis and design (SAND) | en_US |
dc.subject | Computational mechanics | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Parallel processing systems | en_US |
dc.subject | Structural analysis | en_US |
dc.subject | Structural optimization | en_US |
dc.subject | Cell states | en_US |
dc.subject | Cellular computational frameworks | en_US |
dc.subject | Cellular genetic algorithms (CGA) | en_US |
dc.subject | Genetic algorithms | en_US |
dc.title | A SAND approach based on cellular computation models for analysis and optimization | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 39 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 381 | en_US |
dc.identifier.endpage | 396 | en_US |
dc.authorid | 0000-0003-3690-6608 | - |
dc.identifier.doi | 10.1080/03052150601146255 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-34249046659 | en_US |
dc.identifier.wos | WOS:000247731900001 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale University | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
4
checked on Nov 23, 2024
WEB OF SCIENCETM
Citations
4
checked on Nov 24, 2024
Page view(s)
36
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.