Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4309
Full metadata record
DC FieldValueLanguage
dc.contributor.authorİnel, Mehmet-
dc.date.accessioned2019-08-16T11:33:19Z
dc.date.available2019-08-16T11:33:19Z
dc.date.issued2007-
dc.identifier.issn0141-0296-
dc.identifier.urihttps://hdl.handle.net/11499/4309-
dc.identifier.urihttps://doi.org/10.1016/j.engstruct.2006.05.001-
dc.description.abstractThis paper aims to explore the feasibility of the potential use of artificial neural networks (ANN) in deformation estimates of RC columns whose behaviour is dominated by flexural failure. Experimental data of 237 rectangular columns from an existing database were used to develop an ANN model. The input parameters were selected based on past studies such as aspect ratio, longitudinal reinforcement ratio, yield strength of longitudinal reinforcement, uniaxial (cylindrical) concrete strength, yield strength of transverse reinforcement, transverse steel spacing, ratio of transverse steel parallel to the direction of loading, axial load ratio, and confinement effectiveness factor. Ultimate displacement estimates of reinforced concrete columns by the ANN model were compared to the existing semi-empirical and empirical models. The ANN model was found to perform well. The promising results have shown the feasibility of using ANN models for deformation estimates of RC columns. © 2006 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofEngineering Structuresen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectConcrete columnsen_US
dc.subjectDeformation capacityen_US
dc.subjectModelsen_US
dc.subjectComputer simulationen_US
dc.subjectDeformationen_US
dc.subjectNeural networksen_US
dc.subjectReinforced concreteen_US
dc.subjectFlexural failureen_US
dc.subjectReinforced concrete columnen_US
dc.subjectColumns (structural)en_US
dc.subjectartificial neural networken_US
dc.subjectcolumnen_US
dc.subjectdeformationen_US
dc.subjectdisplacementen_US
dc.subjectempirical analysisen_US
dc.subjectloadingen_US
dc.subjectmodelingen_US
dc.subjectreinforced concreteen_US
dc.titleModeling ultimate deformation capacity of RC columns using artificial neural networksen_US
dc.typeArticleen_US
dc.identifier.volume29en_US
dc.identifier.issue3en_US
dc.identifier.startpage329
dc.identifier.startpage329en_US
dc.identifier.endpage335en_US
dc.identifier.doi10.1016/j.engstruct.2006.05.001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33846309276en_US
dc.identifier.wosWOS:000244494100005en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

49
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

40
checked on Nov 21, 2024

Page view(s)

42
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.