Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/4341
Title: | Prediction of chenille yarn and fabric abrasion resistance using radial basis function neural network models | Authors: | Çeven, E.K. Tokat, Sezai Özdemir, Ö. |
Keywords: | Abrasion resistance Artificial neural networks Chenille yarn Prediction Radial basis functions |
Abstract: | The abrasion resistance of chenille yarn is crucially important in particular because the effect sought is always that of the velvety feel of the pile. Thus, various methods have been developed to predict chenille yarn and fabric abrasion properties. Statistical models yielded reasonably good abrasion resistance predictions. However, there is a lack of study that encompasses the scope for predicting the chenille yarn abrasion resistance with artificial neural network (ANN) models. This paper presents an intelligent modeling methodology based on ANNs for predicting the abrasion resistance of chenille yarns and fabrics. Constituent chenille yarn parameters like yarn count, pile length, twist level and pile yarn material type are used as inputs to the model. The intelligent method is based on a special kind of ANN, which uses radial basis functions as activation functions. The predictive power of the ANN model is compared with different statistical models. It is shown that the intelligent model improves prediction performance with respect to statistical models. © Springer-Verlag London Limited 2007. | URI: | https://hdl.handle.net/11499/4341 https://doi.org/10.1007/s00521-006-0048-8 |
ISSN: | 0941-0643 |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
7
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
7
checked on Nov 21, 2024
Page view(s)
42
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.