Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4377
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarahan, Halil-
dc.date.accessioned2019-08-16T11:33:44Z-
dc.date.available2019-08-16T11:33:44Z-
dc.date.issued2007-
dc.identifier.isbn09659978 (ISSN)-
dc.identifier.urihttps://hdl.handle.net/11499/4377-
dc.identifier.urihttps://doi.org/10.1016/j.advengsoft.2006.08.001-
dc.description.abstractIn this study, a user-friendly and a flexible solution algorithm is proposed for the numerical solution of the one-dimensional advection-diffusion equation (ADE). The proposed solution algorithm is based on the description of ADE by using the finite differences method in accordance with the Saulyev scheme. For the solution of the obtained equations, explicit spreadsheet simulation (ESS) technique is used instead of computer code. In the numeric solution of ADE by using finite differences, either the small values of a Courant number such as 0.05-0.10 is used for oscillation free results or an artificial diffusion is used in order to reduce oscillation. In order to provide for small Courant numbers, it is necessary to choose a small time step and/or grid size; however this increases the computation time. While the proposed ADEESS solution technique uses an unconditional stable Saulyev scheme, it gives highly accurate results even for the values of the Courant numbers as high as 2-3. By changing only the values of the temporal weighted parameter (?) with a ADEESS implementation, solutions are obtained for the different ? values. The ADEESS only uses copy & paste property of spreadsheets. Thus, a solution of simultaneous equations for each time step using matrix algebra is not required provided the system converges by simply recalculating all iteratively. Two examples, which have numerical and analytical solutions in literature, are solved in order to test the ADEESS performance. Both examples are solved for three ? values, 0, 0.5 and 1, respectively. It is shown that the model results for both examples for the value of ? = 0 are in good agreement with the analytical solution. © 2006 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofAdvances in Engineering Softwareen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdvection-diffusionen_US
dc.subjectExplicit finite differenceen_US
dc.subjectNumerical diffusionen_US
dc.subjectSaulyev's schemeen_US
dc.subjectSpreadsheeten_US
dc.subjectDiffusionen_US
dc.subjectFinite difference methoden_US
dc.subjectMatrix algebraen_US
dc.subjectNumerical methodsen_US
dc.subjectProblem solvingen_US
dc.subjectSpreadsheetsen_US
dc.subjectAdvection diffusion equationen_US
dc.subjectExplicit finite difference methoden_US
dc.subjectLinear equationsen_US
dc.titleUnconditional stable explicit finite difference technique for the advection-diffusion equation using spreadsheetsen_US
dc.typeArticleen_US
dc.identifier.volume38en_US
dc.identifier.issue2en_US
dc.identifier.startpage80-
dc.identifier.startpage80en_US
dc.identifier.endpage86en_US
dc.authorid0000-0001-5346-5686-
dc.identifier.doi10.1016/j.advengsoft.2006.08.001-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33750073548en_US
dc.identifier.wosWOS:000242782400002en_US
dc.ownerPamukkale University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

41
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

36
checked on Nov 22, 2024

Page view(s)

34
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.