Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/4429
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Karahan, Halil | - |
dc.contributor.author | Ayvaz, Mustafa Tamer | - |
dc.date.accessioned | 2019-08-16T11:34:02Z | - |
dc.date.available | 2019-08-16T11:34:02Z | - |
dc.date.issued | 2006 | - |
dc.identifier.issn | 1091-028X | - |
dc.identifier.uri | https://hdl.handle.net/11499/4429 | - |
dc.identifier.uri | https://doi.org/10.1615/JPorMedia.v9.i5.40 | - |
dc.description.abstract | This study proposes an artificial neural network (ANN) model to solve an inverse parameter identification problem for groundwater modeling. It is a problem for which the transmissivities can be obtained for given hydraulic heads. ANN may be a useful tool for parameter estimation problems because of its ability to model complex nonlinear relationships between state variables and system parameters without a priori assumptions of the nature of a relationship like a black box. To carry out a parameter estimation using the ANN, a hypothetical example has been examined under two scenarios, one involving the sink and/or source terms, the second without these. In the ANN model, the network is trained for about 5, 10, and 20% of all data, and then transmissivities in the other cells are forecasted. Results show that observed and forecasted transmissivities are in good agreement when about 10 and 20% of the hydraulic heads in the solution domain are known. Copyright © 2006 Begell House, Inc. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Journal of Porous Media | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Aquifers | en_US |
dc.subject | Data reduction | en_US |
dc.subject | Groundwater | en_US |
dc.subject | Inverse problems | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Parameter estimation | en_US |
dc.subject | Hydraulic heads | en_US |
dc.subject | Nonlinear relationships | en_US |
dc.subject | System parameters | en_US |
dc.subject | Neural networks | en_US |
dc.title | Forecasting aquifer parameters using artificial neural networks | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 9 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 429 | - |
dc.identifier.startpage | 429 | en_US |
dc.identifier.endpage | 444 | en_US |
dc.identifier.doi | 10.1615/JPorMedia.v9.i5.40 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-33847065496 | en_US |
dc.identifier.wos | WOS:000243169600004 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale_University | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
crisitem.author.dept | 10.02. Civil Engineering | - |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.