Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4429
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarahan, Halil-
dc.contributor.authorAyvaz, Mustafa Tamer-
dc.date.accessioned2019-08-16T11:34:02Z-
dc.date.available2019-08-16T11:34:02Z-
dc.date.issued2006-
dc.identifier.issn1091-028X-
dc.identifier.urihttps://hdl.handle.net/11499/4429-
dc.identifier.urihttps://doi.org/10.1615/JPorMedia.v9.i5.40-
dc.description.abstractThis study proposes an artificial neural network (ANN) model to solve an inverse parameter identification problem for groundwater modeling. It is a problem for which the transmissivities can be obtained for given hydraulic heads. ANN may be a useful tool for parameter estimation problems because of its ability to model complex nonlinear relationships between state variables and system parameters without a priori assumptions of the nature of a relationship like a black box. To carry out a parameter estimation using the ANN, a hypothetical example has been examined under two scenarios, one involving the sink and/or source terms, the second without these. In the ANN model, the network is trained for about 5, 10, and 20% of all data, and then transmissivities in the other cells are forecasted. Results show that observed and forecasted transmissivities are in good agreement when about 10 and 20% of the hydraulic heads in the solution domain are known. Copyright © 2006 Begell House, Inc.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Porous Mediaen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAquifersen_US
dc.subjectData reductionen_US
dc.subjectGroundwateren_US
dc.subjectInverse problemsen_US
dc.subjectMathematical modelsen_US
dc.subjectParameter estimationen_US
dc.subjectHydraulic headsen_US
dc.subjectNonlinear relationshipsen_US
dc.subjectSystem parametersen_US
dc.subjectNeural networksen_US
dc.titleForecasting aquifer parameters using artificial neural networksen_US
dc.typeArticleen_US
dc.identifier.volume9en_US
dc.identifier.issue5en_US
dc.identifier.startpage429-
dc.identifier.startpage429en_US
dc.identifier.endpage444en_US
dc.identifier.doi10.1615/JPorMedia.v9.i5.40-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33847065496en_US
dc.identifier.wosWOS:000243169600004en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

10
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 21, 2024

Page view(s)

56
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.